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Abstract 

The aim of this work is to present numerical methods for solving the first order linear 

Fredholm-Volterra integro-differential equations of the second kind. These methods namely are the 

repeated Trapezoidal method and the repeated Simpson's 1/3 method. These techniques transform 

the integro-differential equations to a system of algebraic equations. Some numerical examples are 

presented to illustrate the efficiency and accuracy of these methods. 

 

1-Introduction 

Mathematical modeling of real-life 

problems usually results in functional 

equations, like ordinary or partial differential 

equations, integral and integro-differential 

equations, stochastic equations .Many 

mathematical formulation of physical 

phenomena contain integro-differential 

equations, these equations arises in many 

fields like fluid dynamics, biological models 

and chemical kinetics.[1], [2].  

There are several solution methods 

including quadrature, collocation, Galerkin, 

variational, for integro-differential equations 

have been studied in [3-8]. 

In this paper, use the repeated Trapezoidal 

quadrature formula and repeated Simpson's 1/3 

quadrature formula to solve the first order 

linear Fredholm -Volterra integro-differential 

equations of the second kind  
b

a

u (x) g(x) L(x, y)u(y)dy    

x

a

K(x, y)u(y)dy  .................... (1.1) 

with the initial condition u(a)= 0u . 

where a x b  ,  and  are scalar 

parameters, g(x), L(x, y) and K(x, y), are given 

continuous functions, 0u ,a,b are known 

constants and u(x) is the unknown function to 

be determined.  

 

 

 

2-The Repeated Trapezoidal Method 

Consider the first order linear Fredholm-

Volterra integro-differential equation of 

second kind given by equation (1.1). To solve 

this equation on the finite interval [a, b], we 

divide it into n smaller intervals of width h, 

where h(ba)/n. The i-th point of subdivision 

is denoted by xi, such that ix a ih,   i  0, 

1,…,n. If we take i i 1
i 1

u (x) u (x)
u (x)

h





  , 

i=1, 2, …, n. 

Then, the approximated solution will be 

defined at the mesh point ix  is denoted by iu  

and is given by.  

b

i i 1 i 1 i 1

a

u u h g(x ) L(x , y)u(y)dy  


   


  

i 1x

i 1

a

K(x , y)u(y)dy








 


 , i 1,2,…,n  

                                       ........................ (2.1) 

with the initial condition u(a)= 0u , 

If we approximate the integrals that 

appeared in equation (2.1) by the repeated 

Trapezoid formula which will yield the 

following system of equations: 

 

n 12

1 0 0 0,0 0 0, j j

j 1

h
u u hg L u 2 L u

2






    



 0,n nL u ,
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2

i i 1 i 1 i 1,0 i 1,0 0

h
u u hg L K u

2
   


     




  
i 2

i 1, j i 1, j j i 1,i 1

j 1

2 L K u 2 L


   



      


n 1

i 1,i 1 i 1 i 1, j j i 1,n n

j i

K u 2 L u L u


    




   





  i 2,3, ,n 1   

 
2

n n 1 n 1 n 1,0 n 1,0 0

h
u u hg L K u

2
   


     




  
n 2

n 1, j n 1, j j n 1,n 1

j 1

2 L K u 2 L


   



    

n 1,n 1 n 1 n 1,n nK u L u   


   


 .......... .(2.2) 

 

where: 

i, j i jK K(x ,x ),i, j 0,1, ,i,           

i,k i kL L(x ,x ),i,k 0,1, ,n,    

i ig g(x ) , i=0,1,…,n. 

 

By solving the system given by equation 

(2.2) which consists of n equations and n 

unknowns, the approximated solution of 

equation (1.1), is obtained. 

 

3-The Repeated Simpson’s 1/3 Method 

Consider the first order linear Fredholm-

Volterra integro-differential equation of 

second kind given by equation (1.1). Here we 

use Simpson’s 1/3 method to find the solution 

of equation (1.1).To do this, we divide the 

finite interval [a, b] into 2n smaller intervals of 

width h, where h  (b  a)/2n, and we take. 

i i 1
i 1

u (x) u (x)
u (x)

h





  , i=1, 2, …,2n. 

The approximated solution at the odd nods 

2i 1x   is given by: 

b

2i 1 2i 2i 2i

a

u(x ) u(x ) h g(x ) L(x , y)u(y)dy


   




2ix

2i

a

K(x , y)u(y)dy , i 0,1, ,n 1



  


 

 

                                        ............................ (3.1) 

and in the even nods 2ix  is given by: 

2i 2i 1 2i 1u(x ) u(x ) h g(x ) 


  



2i 1xb

2i 1 2i 1

a a

L(x , y)u(y) K(x , y)u(y)dy ,



 




  


 

i 1,2, ,n   ..…………………(3.2) 

with the initial condition u(a)= 0u , 

By using the repeated Simpson’s 1/3 

formula to approximate the integrals that 

appeared in equations (3.1) - (3.2) one can get 

the following system of equations: 
2 n

1 0 0 0,0 0 0,2 j 1 2 j 1

j 1

h
u u hg L u 4 L u

3
 




    


  

n 1

0,2 j 2 j 0,2n 2n

j 1

2 L u L u





 


 , 

 
2

2i 1 2i 2i 2i,0 2i,0 0

h
u u hg L K u

3



     




 

 
i

2i,2 j 1 2i,2 j 1 2 j 1

j 1

4 L K u  



    

   
i 1

2i,2 j 2i,2 j 2 j 2i,2i 2i,2i 2i

j 1

2 L K u 2 L K u




     

n n 1

2i,2 j 1 2 j 1 2i,2 j 2 j 2i,2n 2n

j i 1 j i 1

4 L u 2 L u L u


 

   


     


 

 i 1,2, ,n 1   

 
2

2i 2i 1 2i 1 2i 1,0 2i 1,0 0

h
u u hg L K u

3
   


     




 
i

2i 1,2 j 3 2i 1,2 j 3 2 j 3

j 1

4 L K u    



    

  
i 1

2i 1,2 j 2 2i 1,2 j 2 2 j 2

j 1

2 L K u


    



    

2i 1,2i 2 2i 1,2i 2 2i 2

5
2 L K u

2
    

 
    

 
  

2i 1,2i 1 2i 1,2i 1 2i 1

3
4 L K u

2
    

 
    

 
 

n n 1

2i 1,2 j 1 2 j 1 2i 1,2 j 2 j

j i 1 j i

4 L u 2 L u


   

  

    

2i 1,2n 2nL u


 


,    i  0, 1, …, n  2 
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2n 2n 1 2n 1u u hg     

 
2

2n 1,0 2n 1,0 0

h
L K u

3
     

 
n 2

2n 1,2 j 1 2n 1,2 j 1 2 j 1

j 1

4 L K u


    



  

 
n 1

2n 1,2 j 2n 1,2 j 2 j

j 1

2 L K u


 



    

 2n 1,2n 1 2n 1,2n 1 2n 14 L K u        

2n 1,2n 2nL u  .................................  (3.3)  

 

By solving this system which consists of n 

equations and n unknowns, the approximated 

solution of equation (1.1) is obtained.  

 

4-Numerical Examples 

In this section, we give two numerical 

examples to illustrate the repeated Trapezoid 

method and the repeated Simpson’s 1/3 

method. The computations associated with the 

example were performed using Matlab 7. 

 

Example 1 

Consider the first order linear Fredholm-

Volterra integro-differential of the second 

kind: 
x 1

2

0 0

u (x) f (x) x yu(y)dy x(x y)u(y)dy
 
     
 
 
   

with the initial condition u(0)=1,  0≤ x ≤1, 

where 
2 3 2f (x) sin x x cos x x sin x x       

           2x sin(1) x cos(1) x sin(1) x    

and the exact solution is u(x)  cos(x). 

Table (1) and (2) show that the absolute 

errors at some mesh points obtained by using 

the repeated Trapezoid method and the 

repeated Simpson’s 1/3 method respectively 

for h 0.1, 0.025, 0.01. Therefore, Table (1) 

and (2) show that the repeated Simpson’s 1/3 

method gave accurate results than the repeated 

Trapezoid method. Fig.(1) and (2) : Plot the 

exact and numerical solutions for example 1 

by using repeat Trapezoidal method and 

Simpson's method respectively. 

 

 

 

Table (1) 

The absolute errors at some mesh points of 

example 1 obtained by using the repeated 

Trapezoidal method. 
 

Points h=0.1 h=0.025 h=0.01 

x=0.1 4.9958310
3

 1.2334710
3

 4.9274210
4

 

x=0.2 9.7428610
3

 2.4227410
3

 9.6915810
4

 

x=0.3 1.4246210
2

 3.5677110
3

 1.4290910
3

 

x=0.4 1.8516110
2

 4.6695410
3

 1.8728810
3

 

x=0.5 2.2571210
2

 5.7317610
3

 2.3018610
3

 

x=0.6 2.6443010
2

 6.7617710
3

 2.7189710
3

 

x=0.7 3.0181910
2

 7.7727910
3

 3.1296010
3

 

x=0.8 3.3865110
2

 8.7861410
3

 3.5424810
3

 

x=0.9 3.7604810
2

 9.8339410
3

 3.9708810
3

 

x=1 4.1885610
2

 1.0967010
2

 4.4342710
3

 

 

 

Table (2) 

The absolute errors at some mesh points of 

example 1 obtained by using the repeated 

Simpson’s 1/3method. 
 

Points h=0.1 h=0.025 h=0.01 

x=0.1 4.9958310
3

 1.2316310
3

 4.9240010
4

 

x=0.2 9.7029710
3

 2.4149610
3

 9.6788610
4

 

x=0.3 1.4253310
2

 3.5515210
3

 1.4264910
3

 

x=0.4 1.8161110
2

 4.6435710
3

 1.8687310
3

 

x=0.5 2.2296210
2

 5.6957810
3

 2.2961210
3

 

x=0.6 2.5759810
2

 6.7166410
3

 2.7117910
3

 

x=0.7 2.9599710
2

 7.7203610
3

 3.1212610
3

 

x=0.8 3.2979210
2

 8.7290510
3

 3.5334010
3

 

x=0.9 3.6834110
2

 9.7754710
3

 3.9615810
3

 

x=1 3.9526610
2

 1.0800210
2

 4.4073810
3
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Fig. (1): The numerical and exact solutions 

for example 1 by using repeated Trapezoidal 

method. 
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Fig.(2): The numerical and exact solutions 

for example 1 by using the repeated 

Simpson’s 1/3method. 

 
Example 2  

Consider the first order linear Fredholm-

Volterra integro-differential of the second 

kind: 

x 2 22 2
u(x) e x e x e

3 3

         

 
x 2

0 0

x y u(y)dy (xy y)u(y)dy, 0 x 2       

with the initial condition u(0)=1/3, for which 

the exact solution is: x1
u(x) e .

3

  

Tables (3) and (4) show that the absolute 

errors at some mesh points obtained by using 

the repeated trapezoid method and the repeated 

Simpson’s 1/3 method respectively for h 0.2, 

0.05, 0.025. Therefore, Table (3) and (4) show 

that the repeated Simpson’s 1/3 method gave 

accurate results than the repeated Trapezoid 

method. 

Fig. (3) and (4): Plot the exact and 

numerical solutions for example 2 by using the 

repeated Trapezoidal method and the repeated 

Simpson's formula respectively. 

 

Table (3) 

The absolute errors at some mesh points of 

example 2 obtained by using the repeated 

Trapezoidal method. 
 

Points h=0.2 h=0.05 h=0.025 

x=0.2 4.31370 ×10
-3 

7.84211 ×10
-4

 3.06958 ×10
-4

 

x=0.4 5.52089 ×10
-3

 1.13585 ×10
-3

 4.49388 ×10
-4

 

x=0.6 5.30779 ×10
-3

 1.13976 ×10
-3

 4.52554 ×10
-4

 

x=0.8 3.96325 ×10
-3

 8.50526 ×10
-4

 3.37084 ×10
-4

 

x=1 1.71296 ×10
-3

 3.12860 ×10
-4

 1.20008 ×10
-4

 

x=1.2 1.27599 ×10
-3

 4.38837 ×10
-4

 1.85535 ×10
-4

 

x=1.4 4.89173 ×10
-3

 1.38095 ×10
-3

 5.70574 ×10
-4

 

x=1.6 9.07553 ×10
-3

 2.50116 ×10
-3

 1.03058 ×10
-3

 

x=1.8 1.38208 ×10
-2

 3.79902 ×10
-3

 1.56579 ×10
-3

 

x=2 1.79054 ×10
-2

 5.27061 ×10
-3

 2.18054 ×10
-3

 

 

Table (4) 

The absolute errors at some mesh points of 

example 2 obtained by using the repeated 

Simpson’s 1/3method. 
 

Points h=0.2 h=0.05 h=0.025 

x=0.2 4.46978×10
-3 

7.88346×10
-4

 3.08586×10
-4

 

x=0.4 5.45059×10
-3

 1.14498×10
-3

 4.51834×10
-4

 

x=0.6 6.15298×10
-3

 1.14961×10
-3

 4.55127×10
-4

 

x=0.8 3.69175×10
-3

 8.61163×10
-4

 3.39781×10
-4

 

x=1 2.55684×10
-3

 3.27431×10
-4

 1.23315×10
-4

 

x=1.2 1.54949×10
-3

 4.15047×10
-4

 1.80783×10
-4

 

x=1.4 3.87938×10
-3

 1.34119×10
-3

 5.63296×10
-4

 

x=1.6 8.93698×10
-3

 2.43763×10
-3

 1.01952×10
-3

 

x=1.8 1.22055×10
-2

 3.70316×10
-3

 1.54953×10
-3

 

x=2 1.50389×10
-2

 5.11028×10
-3

 2.15621×10
-3
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Fig.(2): The numerical and exact solutions 

for example 2 by using repeated Trapezoidal 

method.  
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Fig. (4): The numerical and exact solutions 

for example 2 by using repeated Simpson’s 

1/3method.  

 

5-Conclusions and Recommendations 

The integro-differential equations are 

usually difficult to solve analytically so it is 

required to obtain an efficient approximated 

method. For this reason, the presented methods 

have been proposed for approximated 

solutions to the first order linear Fredholm-

Volterra integro-differential equations of the 

second kind. From numerical examples it can 

be seen that the proposed numerical methods 

are efficient and accurate to estimate the 

solution of these equations, Also, we show that 

when the values of h decreases, the absolute 

errors decrease to smaller values. We will           

use these methods to study systems of        

linear Fredholm–Volterra integro–differential 

equations of the second kinds in our future 

work. 
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