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Abstract

The rate of uniform convergence for Hermite-Fgjer polynomials to any continuous function f(x)
in each closed sub-interval of (-1,1) has been given by Schonhage in 1971 by means of estimating
the rate of convergence. The present paper deas with the acceleration of convergence and the rate
of convergence by improving the estimate given by Schonhage, throughout two paralld ways,
firstly, by use of the averaged moduli of smoothness or T-moduli that gives much better estimation
than that of the moduli of continuity or o-moduli. Secondly, by make use of the necessary and
sufficient conditions that we borrow from Szego in 1959 together with the well-known Fejer's
identity (3.8) and the properties of t-moduli in addition to some known results that have been given
by Murray Spiegel in 1981 pp299-345.
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Introduction

Let f(X) be a continuous function defined
on the closed interval [-1,1]. Recall Legendre
polynomials of the first kind (see [6] pp. 343-
345) which are solutions to the Legendre
differential equation:

(- x?)y®+ 2y¢+ mm+1)y=0......... (1.1)
where mis areal number. This equation can be
solved by means of Frobinous series method
(see [7]) as follows. Since x=0 is an ordinary
point of the equation, then the solution will be

in the form
3

Y= A aX e (1.2)

j=-¥

From now on, we shall omit the limits of the
summation which are from -, to «. The
singular points of this series are  x=+1,
that means it should be converge at least in
the openinterval (-1,1)

From (1.2) we have

y=aax,yt=8 jax ™, y¢=3 j(j- Ja,x"?
Substituting (1.3 ) into (1.1 ) we get
Aili-2ax - aili- Jax - §2iax +gmm+1ax =0
i.e _
Alli-2i+a..- i(j-Ja - 2jg +nfm+a x =

or

150

& +2i +1ay., +[m(m+1)- j(j +2a [0 =0
Since X0, then

(i +2)(i +ay., +[mm+1)- j(j+1]=0
............................... (1.9
Putting j=-2 in (1.4) shows that ag is arbitrary.
Putting j=-1 in (1.4) shows that a; is arbitrary.
from (1.4) the general solution is given as: [7]

= Imlm+2)- §(i+2)]
(i+2)i+y)
Putting j=0,1,2,3,... in secession, we find

a'j+2

(1)
azz-@“(z! )Hao,
_ g’n(m+l)-1>Qg
& =- 3
__gn(m+1)- 28y
A 43
m(m+1) gm(m+1)- 253
RLUCELEELR
__gn(m+1)- 34y
%= 5x4
0= gm(m+1)- L2pgn(m+1)- 3>4t;|al’ ac.

ol



\ y=gl- —m(r;ﬂ) X2+
m(m+3)[m(m+1)- 2>6X4_
4

+g[Xx - —[m(m-;l) NN

L]+

+[m(m+]) - 1>Q|]55m(m+]) - 3>4x5 )

L]

......... (1.5)
Since mis a real number (not an integer), (see
[7] p.344) both of the two series in (1.5)
converge when -1<x<1, but they diverge for
x==1. If mis a positive integer or zero, one of
these series becomes a polynomial, while the
other series converges for -1<x<1 but diverges
for x=+1. To find the polynomial solutions, for
m=0,1,23,..., we obtan 1, x, 1-3¢ x
5/33¢,...which are polynomials of degree
0,1,2,3,...respectively.
Multiplying each of these polynomials by a
constant so chosen that the resulting
polynomia has the value 1 when x=1. The
resulting polynomials are caled Legendre
polynomias and are denoted by P,(x). Where

(¥ =1

Ax¥)=x
1

IOZ(X):E(:"X2 - ])
1

P =§(5X3 -3

n,(x) :%(35(‘ - 30¢+3)

n(x) =% (63¢ - 70¢ +15¢)

Remarks:
Legendre  polynomias  satisfy  the

following properties (see[7]):

2n+1 n
1 Pn+l(x) = n+1 XPn (X)_ mpnﬂ(x) .

1 dn 2 n
X -1
2"nl dx" ( ) _
1 _3 n
L -4p
3. 41- 2X+t° n=0
4. Legendre polynomials are the only solution
of Legendre equation [4] which are bounded

2. P,(x) =
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in -1<x<1, since the series giving all other
solutions diverge for x=+1
5. If Py(X)=0 for n=-1,-2,..., then we get

(2n+1)P, (x)=P,..(x)- Py (x). (P, (x )ax

6. Pra(x)- Pi(x) = (n+1)R, (x)
7. xP.(x)- P_,(x)=nP,(x)

n

an1333..512n-1
9. P,(0)=(1) 2><4><.$.>r;n :

10. R(-¥=(- IR, R@=1 R(-J=(-1"

Fig.(1) below (seg[6]) represents Legendre
polynomials of the first kind po(X), p1(X), ...
ps(X) defined on the closed interval [-1,1].

Pz

-1

Fig.(1) : Legndre polynomials pi(x).
i=0,1,...,5 of thefirst kind [6].

2. Hermite-Fger's polynomials and the
estimate of therate of convergence[9]

Let 1>X1 > Xon> .. > X0 n>-1 be the roots of the

Legendre polynomia pn(x) of degree n. The

general form of Hermite-Fger interpolation

polynomials of degree <2n-1(see[9]) is

n _ 2
H(1)= & 1l ) g, ()
k=1 - Xk,n

these polynomials satisfy

Hn(f,xk,n)z f(xk,n), H,@(f,xkvn)=0,
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___RhK

rnk’n(X) X= Xen Pn Xin

L. Fger has proved (see [8]) that the
sequence Hq(f,xX) converges uniformly to the
continuous function f(x) for |x|]<1 in each
closed subinterval of (-1,1). Also he proved
that the following limit at the end points of the
interval [-1,1] is satisfied

. Where

. 1y

lim Hn(f,il)=§df(x)dx ..................... (2.2)

It has been givenin [1] that the condition
1

f(x1)= % o .0 T (2.3)
-1

is necessary and sufficient for

lim] £ ()~ H,(f.x) oy =0 XEL ... (24)

The rate of convergence has been estimated in
[9] for a continuous function f(x) in[-1,1] as:
() Ha(f ) =

max gf
‘f

@& 1

o -
(; nvl- x2

o (x)ox

I\Jll—‘

U,

1\1
-5of (g

U

® @& 60
6 ¢ ¢ 1 7
2+0Cay, G

g C ¢ [logn =+
& n g

where of(.)=w(f,6) denotes the modulus of
continuity of f(x) [2,3].

The graphical representation (see [11]) of
Legendre polynomias of the second kind is
shown in Fig.(2) below
@r.l':.’,l

1

I

Fig.(2): [11] Legendre polynomials of the

second kind Qp, n=0,1,2,...,5 (solutions).
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Definition: [7] Hermite Equation
yC- 2xy(+2my=0

is a specid case of the Sturm-Liouville
Boundary Vaue Problem. It arises in the
treatment of the harmonic oscillator in
guantum mechanics. This equation has
solutions caled Hermite polynomials when
n=0,1,2,... and are denoted by H,(xX) and have
many important properties analogous to those
of Bessel functions and Legendre polynomials
[7] such as:

1. H,,(x)=2xH_(x)- 2nH_,(x)

2. H,(x)=(- 1)”e*2c‘:'—:(e'xz)2.
3. e t2 =a 3 (X)t
nO n

Below isthefirst six Hermite polynomials:
H,o(x) =1 H,(x)=2x,H,(x) = 4x*- 2,
H,(x)=8x%- 12x,H,(x) =16x* - 48x* +12,
H,(x)=32x° - 160x° +120x

Note: In Fig.(3) below Hermite polynomials
are scaled down by a factor of n? in order to
be fit on the same plot i.e.

H,(x)=1

H,(x) = 2x

H,(x)/4=x?-

H,(x)/16 = x* - 3x* +%

32

Hs(x)/ZS:Exs - 32x% + 24x



Fig.(3) : graphical representation of Hermite
polynomials H(x)/n?, n=0,1,2,3, 4,5
(see [10]).

If equation (2.1) holds, Schonhage has proved
in [1] the following estimate as a corollary:

109- H() =ofn §2002 [xe1

3. Preliminaries and moduli of smoothness

In order to improve error estimates (2.5)
and (2.6) by use of the well known averaged
moduli of smoothness [2] whenever possible.
In addition to these moduli,the given estimates
in section 4 (see [5]) will definitely give a
better acceleration to the rate of convergence
and minimize the error of the estimation of
Hermite-Fegjer polynomials.

Some notations and definitions[2]:

The modulus of continuity is used to
measure the continuity of a function feCiap
and is defined as

o(f;8)=w(5)
=sup{[f (x)- f (x9|:|x - x$£8,x,x4 [a,b]}

(3.1
The K" difference with step h at a point x for
every continuous function f is

uww=acm§%u+mx
m@
&0 ki

where

5 mk-m
is the binomia coefficient
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The modulus of smoothness of order k of a
continuous function f is

wk(f;é):wdjmf(x)‘:|h| £6,x x+kh [ab]}

and has the following property:

o (f;26)£ (A +1) 0 (f;6),4,6 >0......(3.3)

The integral Lp,-modulus (or p-modulus) of
order k of the function f is

0, (1:5), = ap {3"

0E£hES
(3.4
The loca modulus of smoothness of the
continuous function f of order k a a point
Xe[a,b] isdefined as

I|Dk (t):t.t+ :J
a(xi9)= wp; hi gxﬁ +k—2‘5§<;[a,b]i
............................... (3.5)

so
o, (f;8) =], (fx5) —— (3.6)
Evidently, the averaged modulus of

smoothness of order k (t-modulus) of the
function feMap; (M is the set of bounded and
measurable functions on [a,b]) is defined as

2 (1:0) =l (1 0), =§3(anlr xo) ol
............................... (3.7)
and has the following  properties
7,(f.248), £ (2(2 +2)“*z,(:5),,4,6 >0
............................... (3.8)
(£;69£7,(f;60,6(E5C.........ccn........ (3.9)

4. Acceleration of Convergence
For the sake of simplicity, from now on we
shall write X, for Xn.

Recdll the following estimates (see [5]):

P (x)» n% |~ k=12, 98 . 4.1
(6)» < gy 4D
isthe greatest integer I&esthangzt;I where

n
— or equal to
5 €q
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p, (% )» n?Vn+1- k_§EU+1,|_ n (X E REONL- X 1
‘ &2H Al PE(x L 3¢) e @ O o O+6
(42) A\ X N th 29n?~—_kgn—_"k
, . 2 2
g'f‘(_ 19 £ P(xW1- X 1
2 énu 2
1-x2 > € 1‘_2_’2 K120 G 4.3) R %) pgn 8 1
% 10 2
¢ 2o e PONLX o
3 \ - ,0-6 -
152 >F-k+20 el k=80 n s e pg(x - xS €2
é 2g 2" g4 2
(4.4) when kA + and ¥x; is the zero of P,(x) which is
. e mmm— : the nearest to x, by hypothesis, then
k-7 —oFL0
e 21‘?’ <0, < k’fl K=12 0 oo (45) ALY e -
n+— n+— Theorem 1:
2 12 Let f(x) be a continuous function defined on
P(X{1- X2 £—— e, (46)  theinterval [-1,1], then
Jn2/x £ (x)- H.(f,x) =
where x,=cosfy; x=cosf 131 i
These estimates will play a basic role in the = mang(+1)- —qf(x)d><1uPnz(x)+
proof of the following lemma. 2 u
Lemma: noq E 3 2y 0
Let x; be the root of P,(x) which is nearest to x, OeP ( )raef 0u+é %T(}f;'|Pn(X)| (1- X ) i
then &j i | g Jn B
A(X)= Pnz(x)( 2 Xz) 8910 where xe[-1,1].
P Jo- ¢fx- x ) &%
when kt j,k=j+1 Hermite-Fgjer's polynomial (2.1) yields
! - n P2 X
proat Ho(10= 4 £00) gt
_— k=1 P¢ (Xk)l' Xy
To prove that )
6=0 B0 when ki j k=1 & 1 ()7—m! ()
Alx)= gl_zg LK=]% k=1 - X
From (46) we have o ) R RTINS (47)
)P, (x)‘{/l- ]2 = \/(1 xz)pf(x) and Fejerslldentlty [4] is
For x=cosf and x.=cost (4.6) we find from a P (1?( ) =1 (4.8)

calculus (see for example, Thomas "caculus
and analytic geometry" 4™ eddition) that

when x=cosb then

X, = C0s6,

X; = cos’ 6,

1- xZ =1- cos’ 6,

(1- x,f)zsinzek

J1- X2 =sin@,

Therefore eg. (*) and theineg. (**) yield
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Usmg the last |dentity with equation (4.7) to
obtain the following identity

P (x )+a 2(x)—l ......................... (4.9)
This |dent|ty and equation (3.7) give
f(x)- H,(f,x)=
fx)
{01 0)- & e
[f (X - f (Xk)]Ak (X) - T1 + T2
............................. (4.10)

Let us estimate T, firstly as O<x<1. Then



............................ (4.12)
Recdl estimation (2.6) and the fact that
[Pn(X)|<1 (see [5]) and t-property (3.9), and
the last inquality (4.11) to get

SR (X)[f (x)-f (1|£R?(x) 7 (f:(1- X))
£P?(x)7, (f 1- x2)
@ d o]0
£Tkgf;§Pn(X) (1 X) 3:§_+\/ﬁ4(1'x ) 3
¢'e € [Pk ¢
g 8 fie? d
;. F0ffxT]e
P2 (x )£2rkg N L (4.12)
& 5

Let Eq(f) denotes the deviation from f(x) of the
polynomia gn(X) of degree less than or equal n
of best approximation on the interva [-1,1],
then by Jackson's theorem [ 3] we deduce

En(f)£crg ;19,
e Ng

The Gauss-Jacobi quadrature formula is exact
for polynomials of degree <2n-1. Thus

13 e b Gl
2Qq“(x)dx A pe(x - X2

In virtue of Fejer's identity (4.8) and egs.(4.11)

and (4.12) wefind (4.12)
where c;>0
Equations (4.11), (4.12) and (4.15) imply the
&ctimate
& RS2 e 14

T|= eréf I :+P ( )rfﬁ Q}J+

e [}
P20 1) 314

(4.16)
Similarly, when -1<x<0 we find the estimate
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¢z x4 0
|T1|=ngk§f;|P”( )|\/(% ) :+P2(x)rkg"f

e 2
Pnz(X)( f(-9- % af (x)d{ .................... (4.17)

Therefore, when -1<x<1, the two equations
(4.16) and (4.17) imply the estimate

IT|= ozcéf % V(rfx); PR ;L:
RA(x) f (1)- % é f (x)d% ................ (4.18)
Now, to &stimateTz, we have

|T2|£ a |f xk)|Ak (x)+

& 1 (<)~ (x, A (x)

[ni2Jv

The previous lemma and the estimates (4.1),
(4.3), (4.6) and (3.8) when k=1 dl of them
simultaneoudly imply the following estimate
for the first summation on the right side of the
last inequality above:

n/2

|f xk)|Ak(x)£
P.(x)|i - k 1 x? 3u
ag' - e )
Ghog H
|x x,|vn 3

+

A; (x)

aD W) (0N

|\/1 X2 SL'j J
Gl X)I - e &
KN

29

Similarly, we get the estimation of the second

summation. Whence,

=)

| [N

O

_

N

"D

1

&1 Frigh-x) S
TR ST

m The egtimates given in (3.10), (4.18) and
(4.19) end the proof of theorem 1.

(4.19)[T,| =0¢a

SEEE '|8':
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Corollary: 1% k _ 1% k
. L H,(f.0- f(0>—= a

Let f(x) be a continuous function in the ' a2 co 9r12 2 co9 - coB
interval [-1,1] such that (2.3) is stisfied, then klmz oo, 9 cos
1£(x)- H,(f;x) = 1 k

) i ef & 6 18q2klsm sn? &

A 16,81 ¢ 1- 27 2
=02 (X ;=2 § =1, u n

Qn( )Tkg n %Iz kg Jn i1 >2(2n+]) e ko Clogn’

e _ a4 of & on-4k+3 - n
for -1<x<1. Moreover, if %(f;t)=t" for 0<a<1, and the proof is done. -

then using the estimate (14) and theorem 1 to
obtain

|f (x)-H,(f ,x)|=

é 12 g, . 1u
Qmaxg?(ﬂ)—aolf (x)dxg i
P? (x) +0 20 370

@
where xe[-1,1].
Definition:

(see [3]) A function f defined on A=[a,b],
satisfies a Lipschitz condition with constant M
and exponent a, or belongs to the class Lipua,
M>0, O< o<1 if
[F(x9- f(x) £ M|x¢ §, % xd A
The following theorem 2 proves that the
estimation included in this paper is precise for
f(x)eLipl, -1<x<1[3].

Theorem 2;

There exists a function f(x)eLipl and a
constant ¢ such that

H,(f.0)- ()3 c'Oi”
where n is even integer.

Proof:
Let f(X)=|x|,x=cos8, 6=7/2 and n be even,
we have [5],
(n-1) _ 1
>

1>3>53..
P (0) =
7.0) o

2x4%6%..{n- 2)n
Estimations (4.1), (4.3), (4.5), and (4.20) give
for (4.21) and for 6=#/2, the following
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