SOME CHARACTERIZATIONS OF WEAKLY^{*} *m*-CONTINUOUS MULTIFUNCTIONS

Bassam Jabbar J. Al-Asadi and Umilkeram Q. Al-Ramadhan Department of Mathematics, College of Science, Al-Mustansiriyah University, Iraq–Baghdad.

Abstract

In this paper we introduce some characterizations of weakly^{*}-m-continuous multifunctions and some results about strongly-m-continuous multifunctions.

Introduction

The concept of minimal structure space was introduced in 1996 by H. Maki [1]. In 1968 Velicko [2] introduced the concept of θ -open set. This concept has been studied intensively by many authors Al-Asadi B. J. [3] defined the concept of θm_x -open and in 2008 Al-Asadi B. J. [4] introduced the concept of weakly*-m-continuous multifunction and in this paper we introduce some characterization of weakly*-m-continuous multifunction and some results about strongly m-continuous multifunction. We obtained some properties of weakly*-m-continuous multifunction about connectedness and compactness.

Preliminaries

Let (X, τ) be a topological space and *A* a subset of *X*. The closure of *A* and the interior of *A* are denoted by cl(A) and int(A), respectively.

Definition 1-1:

A subset A of a topological space (X, τ) is said to be

- regular closed (resp. regular open) if cl(int(A))=A (resp. int (cl(A))=A) [5].
- (2) Preopen [6] (resp.semi-open [7], α -open [5], β -open [8]) if $A \subset int(cl(A))$ (resp. $A \subset cl(int(A))$, $A \subset int(cl(int(A)))$, $A \subset cl(int(cl(A)))$).
- (3)The family of all preopen (resp. semi-open, α-open, β-open) sets in X is denoted by PO(X) (resp. SO(X), α(X), β(X)).
- (4) The complement of a preopen (resp. semi-open, α-open, β-open) set is said to be preclosed (resp. semi-closed, α-closed, β-closed).

- (5) The intersection of all preclosed (resp. semi-closed, α-closed, β-closed) sets of X containing A is called the preclosure (resp. semi-closure, α-closure, β-closure) of A and is denoted by pcl(A) (resp. scl(A), α cl(A), β cl(A)).
- (6) A subset A is called θ -open iff $A = \operatorname{int}_{\theta}(A) = \mathbf{U}\{u : cl(U) \subseteq A, U \in \tau\}$ [2].
- (7) A subset A is called θ -closed iff $A = cl_{\theta}(A)$

$$= \mathbf{I} \{ F : A \subseteq cl(F), X \setminus F \in \tau \}$$

Definitions 1-2 [1]:

- (1) A subfamily m_X of the power set P(X) of a nonempty set X is called a minimal structure (briefly, m-structure) on X if $\phi \in m_X$ and $X \in m_X$. Each member of m_X is said to be m_X -open and the complement of an m_X -open is said to be m_X -closed set. We denote by (X, m_X) the m-structure space.
- (2) Let (X, m_x) be an m-structure space, for a subset A of X, the m_x -interior of A and the m_x -closure of A are defined as follows :
- (a) $m_X \operatorname{int}(A) = \mathbf{U}\{U : U \subseteq A, U \in m_X\}$
- (b) $m_x -cl(A) = \mathbf{I} \{F : A \subseteq F, X \setminus F \in m_x \}$ Not that $m_x -int(A)$ is not necessarily m_x -open, also $m_x -cl(A)$ is not necessarily m_x -closed see[1].
- (3) An m-structure m_X on a nonempty set X is said to have the property (β) if the union of any family of subsets belonging to m_X belong to m_X .

Lemma 1-3 [1] :

Let (X, m_x) be an m-structure space, for a subset A of X the following hold:

(1)
$$m_X - cl(X \setminus A) = X \setminus m_X - int(A)$$
 and
 $m_X - int(X \setminus A) = X \setminus m_X - cl(A)$.

- (2) If $X \setminus A \in m_X$, then $m_X cl(A) = A$ and if $A \in m_X$, then $m_X int(A) = A$.
- (3) If $A \subseteq B$, then $m_X cl(A) \subseteq m_X cl(B)$ and $m_X - int(A) \subseteq m_X - int(B)$.
- (4) $A \subseteq m_x cl(A)$ and $m_x int(A) \subseteq A$
- (5) $m_x cl(m_x cl(A)) = m_x cl(A)$ and $m_x - int(m_x - int(A)) = m_x - int(A)$.

Lemma 1-4 [1]:

Let (X, m_x) be an m-structure space, and A a subset of X. then $x \in m_x - cl(A)$ iff $U \mathbf{I} A \neq \phi$, for every $U \in m_x$ containing x.

Lemma 1-5 [1] :

For an m-structure m_X on a non-empty set *X*, the following are equivalent :

- (1) m_x has property (β).
- (2) If $m_x int(V) = V$, then $V \in m_x$.
- (3) If $m_x cl(F) = F$, then F is m_x -closed.

Lemma 1-6 [1] :

Let (X, m_X) be an m-structure space with property (β) . For a subset A of X, the following properties hold :

- (1) $A \in m_X$ iff $m_X int(A) = A$.
- (2) A is m_x -closed iff $m_x cl(A) = A$.
- (3) $m_x int(A) \in m_x$ and $m_x cl(A)$ is m_x -closed.

Definition 1-7 [3]:

Let (X, m_x) be an m-structure space, for a subset A of X:

(1)The θm_x -interior of A is defined by

$$\theta m_{\chi} - \operatorname{int}(A) = \mathbf{U}\{U : m_{\chi} - cl(A) \subseteq A, U \in m_{\chi}\}$$

(2) *A* is called θm_x -open iff $\theta m_x - int(A) = A$ and the complement of *A* is called θm_x -closed.

- (3) A point x of X is said to be a θm_x -cluster of a subset A if $m_x - cl(U)\mathbf{I} A \neq \phi$ for every m_x -open set containing x.
- (4) The set of all θm_x -cluster points of A is said to be θm_x -closure of A and denoted by θm_x -cl(A).

Remark 1-8 [1] :

If an m-structure space m_x on a non-empty subset X satisfy (β), then we have every θm_x -open is m_x -open.

Remark 1-9 [3] :

Let (X, m_x) be an m-structure space. For subsets A and B of X, the following hold :

- (1) $\theta m_X cl(X \setminus A) = X \setminus \theta m_X int(A)$ and $\theta m_X - int(X \setminus A) = X \setminus \theta m_X - cl(A)$
- (2) $\theta m_x \operatorname{int}(A) \subseteq m_x \operatorname{int}(A) \subseteq A$ and $A \subseteq m_x - cl(A) \subseteq \theta m_x - cl(A)$
- (3) If $A \subseteq B$, then $\theta m_X - cl(A) \subseteq \theta m_X - cl(B)$ and $\theta m_X - int(A) \subseteq \theta m_X - int(B)$
- (4) A is θm_x -closed iff $\theta m_x cl(A) = A$

Remark 1-10 [3] :

Let (X, m_x) be an m-structure space and A, B are subsets of X, then :

- (1) $\theta m_x cl(A \mathbf{U}B) = \theta m_x cl(A) \mathbf{U}$ $\theta m_x - cl(B)$ (2) $\theta m_x - cl(A \mathbf{I} B) \subseteq \theta m_x - cl(A) \mathbf{I}$ $\theta m_x - cl(B)$ (3) $\theta m_x - int(A \mathbf{U}B) \supseteq \theta m_x - int(A) \mathbf{U}$ $\theta m_x - int(B)$ (4) $\theta m_x - int(A \mathbf{I} B) \subseteq \theta m_x - int(A) \mathbf{I}$
 - $\theta m_{X} \operatorname{int}(A \mathbf{1} B) \subseteq \delta m_{X} \operatorname{int}(B)$

w^{*}-m-continuous multifunction

Recall the definition of multifunction. A multifunction $F: X \to Y$ from a topological space (X, τ) into a topological space (Y, σ) is a point to set correspondence such that $F(x) \neq \phi$ for all $x \in X$.

Vol.13 (1), March, 2010, pp.142-149

Definition 2-1 [9]:

Let $F: (X, \tau) \to (Y, \sigma)$ be a multifunction from a topological space (X, τ) into a topological space (Y, σ) .

(1) The upper and lower inverse of a set B of the space Y are denoted by F⁺(B) and F⁻(B), respectively and defined as F⁺(B) = {x ∈ X : F(x) ⊆ B},

 $F^{-}(B) = \{x \in X : F(x) \mathbf{I} \ B \neq \phi\}.$

(2) Let P(Y) be the collection of all non-empty subsets of Y, we define $V^+ = \{B \in P(Y) : B \subseteq V\}$ and

$$V^{-} = \{B \in P(Y) : B \mathbf{I} V \neq \phi\}.$$

Definition 2-2 [4]:

A multifunction $F:(X, m_X) \to (Y, \sigma)$ where X is non-empty set with an m-structure m_X into a topological space (Y, σ) is said to be weakly^{*}-m-continuous, (briefly w^{*}-m-continuous) (resp. strong-m- continuous, briefly s-m-continuous) iff for each $x \in X$ and for each open sets V_I , V_2 of Y such that $F(x) \in V_1^+ \mathbf{I} V_2^-$, there exists $U \in m_X$ containing x such that

 $F(u) \in [cl(V_1)]^+ \mathbf{I} [cl(V_2)]^- (\text{resp.})$

 $F(u) \in V_1^+ \mathbf{I} V_2^-$ for all $u \in m_x - cl(U)$.

Definitions 2-3:

A subset A of a topological space (X, τ) is said to be

- 1) α -regular [10] if for each $a \in A$ and each open set U containing a, there exists an open set G of X such that $a \in G \subset cl(G) \subset U$,
- α-paracompact [11] if every X-open cover of A has an X-open refinement which covers A and is locally finite for each point of X.

For a multifunction $F: X \to (Y, \sigma)$, by $cl(F): X \to (Y, \sigma)$ we denote a multifunction defined as follows : cl(F)(x) = cl(F(x)) for each $x \in X$. Similarly, we denote $scl(F): X \to (Y, \sigma)$, $pcl(F): X \to (Y, \sigma)$, $\alpha cl(F): X \to (Y, \sigma)$ and $\beta cl(F): X \to (Y, \sigma)$ [9].

Lemma 2-4 [9]:

If $F:(X, m_X) \to (Y, \sigma)$ is a multifunction such that F(x) is α -regular and α -paracompact for each $x \in X$, then 1) $G^+(V) = F^+(V)$ for each open set V of Y, 2) $G^-(K) = F^-(K)$ for each closed set K of Y, where G denotes $cl(F), pcl(F), scl(F), \alpha cl(F), \text{ or } \beta cl(F)$.

Lemma 2-5 [9]:

For a multifunction $F: (X, m_X) \to (Y, \sigma)$, the following properties hold :

(1) G⁻(V) = F⁻(V) for each open set V of Y,
(2) G⁺(K) = F⁺(K) for each closed set K of *Y*.

where G denotes

 $cl(F), pcl(F), scl(F), \alpha cl(F), \text{ or } \beta cl(F).$

Theorem 2-6 [4]:

For a multifunction $F:(X, m_X) \rightarrow (Y, \sigma)$, the following are equivalent :

- 1) F is $w^* m$ continuous.
- 2) $F^+(G_1)\mathbf{I} F^-(G_2) \subseteq$

 $\theta m_X - \operatorname{int}(F^+(cl(G_1))\mathbf{I} F^-(cl(G_2)))$ for every open set G_1, G_2 of Y.

3) $\theta m_x - cl(F^-(\operatorname{int}(K_1)) \mathbf{U} F^+(\operatorname{int}(K_2)))$ $\subseteq F^-(K_1) \mathbf{U} F^+(K_2)$

for every closed sets K_1 , K_2 of Y.

4) $\theta m_X - cl \left(F^-(\operatorname{int}(cl(B_1))) \mathbf{U} F^+(\operatorname{int}(cl(B_2)))\right)$

 $\subseteq F^{-}(cl(B_1)) \mathbf{U} F^{+}(cl(B_2)) \quad \text{for every}$ subsets B_1, B_2 of Y.

5) $F^+(\operatorname{int}(B_1)) \mathbf{I} F^-(\operatorname{int}(B_2))$ $\subseteq \theta m_X - \operatorname{int}(F^+(cl(B_1)) \mathbf{I} F^-(cl(B_2)))$ for every subsets B_1, B_2 of Y.

6) $\theta m_X - cl(F^-(G_1) \mathbf{U} F^+(G_2))$ $\subseteq F^-(cl(G_1)) \mathbf{U} F^+(cl(G_2))$ for every open set G_1, G_2 of Y.

Lemma 2-7 :

If $F:(X, m_x) \to (Y, \sigma)$ is a multifunction such that F(x) is α -regular and α paracompact for each $x \in X$, then

- 1) $G^{+}(V_{1}) \mathbf{I} G^{-}(V_{2}) = F^{+}(V_{1}) \mathbf{I} F^{-}(V_{2})$ for each open sets V_{1}, V_{2} of Y.
- 2) $G^+(K_1) \mathbf{I} G^-(K_2) = F^+(K_1) \mathbf{I} F^-(K_2)$ for each closed sets K_1, K_2 of Y,

where G denotes cl(F), pcl(F), scl(F), $\alpha cl(F)$, $\beta cl(F)$.

Proof :

The proof follows from lemma 2-4 and 2-5.

Theorem2-8 :

Let $F:(X, m_x) \to (Y, \sigma)$ be a multifunction such that F(x) is α -regular and α paracompact for each $x \in X$. Then the following properties are equivalent:

1) F is w^{*}-m- continuous.

2) cl(F) is w^{*}-m- continuous.

3) scl(F) is w^{*}-m- continuous.

4) pcl(F) is w^{*}-m- continuous.

5) $\alpha cl(F)$ is w^{*}-m- continuous.

6) $\beta cl(F)$ is w^{*}-m- continuous.

Proof :

We put
$$G = cl(F)$$
, $scl(F)$, $pcl(F)$, $\alpha cl(F)$
or $\beta cl(F)$ in the sequel.

Necessity Suppose that *F* is w^{*}-m-continuous. Then it follows from theorem 2-6 and Lemma 2-7 that for every open sets V_1 , V_2 of *Y*,

$$G^{+}(V_{1}) \mathbf{I} G^{-}(V_{2}) = F^{+}(V_{1}) \mathbf{I} F^{-}(V_{2})$$

$$\subseteq \theta m_{X} - \operatorname{int}(F^{+}(cl(V_{1}))) \mathbf{I} F^{-}(cl(V_{2})))$$

$$= \theta m_{X} - \operatorname{int}(G^{+}(cl(V_{1}))) \mathbf{I} G^{-}(cl(V_{2})))$$

By Theorem 2-6, G is w^{*}-m- continuous.

Sufficiency. Suppose that G is w^{*}-mcontinuous. Then it follows from theorem 2-6 and Lemma 2-7 that for every open sets V_1 , V_2 of Y,

$$F^{+}(V_{1}) \mathbf{I} F^{-}(V_{2}) = G^{+}(V_{1}) \mathbf{I} G^{-}(V_{2})$$

$$\subseteq \theta m_{X} - \operatorname{int}(G^{+}(cl(V_{1})) \mathbf{I} G^{-}(cl(V_{2})))$$

$$= \theta m_{X} - \operatorname{int}(F^{+}(cl(V_{1})) \mathbf{I} F^{-}(cl(V_{2})))$$

It follows from theorem 2-6 that F is w^{*}-m- continuous.

Theorem 2-9 :

For a multifunction $F : (X, m_X) \to (Y, \sigma)$ the following properties are equivalent : (1)*F* is w^{*}-m- continuous. (2) $\theta m_X - cl(F^-(int(cl(V_1)))) \mathbf{U}F^+(int(cl(V_2))))$ $\subseteq F^-(cl(V_1)) \mathbf{U}F^+(cl(V_2))$ for every preopen sets V_1, V_2 of *Y*. (3) $\theta m_X - cl(F^-(V_1)) \mathbf{U}F^+(V_2))$ $\subseteq F^-(cl(V_1)) \mathbf{U}F^+(cl(V_2))$ for every preopen sets V_1, V_2 of *Y*.

(4)
$$F^+(V_1) \mathbf{I} F^-(V_2)$$

 $\subseteq \theta m_X - \operatorname{int}(F^+(cl(V_1)) \mathbf{I} F^-(cl(V_2)))$ for
every preopen sets V_1, V_2 of Y .

Proof :

(1) \Rightarrow (2) Let V_1 , V_2 be any preopen sets of Y. Since $int(cl(V_1))$ and $int(cl(V_2))$ are open, by Theorem 2-6 we have $\theta m_x - cl(F^{-}(\operatorname{int}(cl(V_1))) \mathbf{U}F^{+}(\operatorname{int}(cl(V_2))))$ $\subseteq F^{-}(cl(int(cl(V_1)))) \mathbf{U} F^{+}(cl(int(cl(V_2)))))$ $\subseteq F^{-}(cl(V_1)) \mathbf{U} F^{+}(cl(V_2)).$ $(2) \Rightarrow (3)$ Let V_1 , V_2 be any preopen sets of Y. Then by (2) we have $\theta m_{\chi} - cl(F^{-}(V_{1})\mathbf{U}F^{+}(V_{2}))$ $\subseteq \theta m_x - cl (F^{-}(int(cl(V_1)))) \mathbf{U}$ $F^+(\operatorname{int}(cl(V_2)))) \subset F^-(cl(V_1)) \mathbf{U} F^+(cl(V_2))$ $(3) \Rightarrow (4)$ Let V_1 , V_2 be any preopen sets of Y. Then by (3) and Remark 1-9 we have : $X \setminus \theta m_{\chi} - \operatorname{int}(F^{+}(cl(V_{1})) \mathbf{I} F^{-}(cl(V_{2})))$ $= \theta m_{\chi} - cl((X \setminus F^{+}(cl(V_{1})))\mathbf{I} F^{-}(cl(V_{2})))$ $= \theta m_{X} - cl \left(X \setminus \left(F^{+}(cl \left(V_{1} \right) \right) \mathbf{U} \right)$ $(X \setminus F^{-}(cl(V_{2})))$ $= \theta m_{X} - cl \left(F^{-}(Y \setminus cl (V_{1})) \mathbf{U} F^{+}(Y \setminus cl (V_{2})) \right)$ $\subseteq F^{-}(cl(Y \setminus cl(V_{1}))) \mathbf{U} F^{+}(cl(Y \setminus cl(V_{2})))$ [since every open set is preopen set] $= F^{-}(Y \setminus int(cl(V_1))) \mathbf{U} F^{+}(Y \setminus int(cl(V_2)))$ = $(X \setminus F^+(\operatorname{int}(cl(V_1)))) \mathbf{U} (X \setminus F^-(\operatorname{int}(cl(V_2))))$ $= X \setminus (F^+(\operatorname{int}(cl(V_1))) \mathbf{I} F^-(\operatorname{int}(cl(V_2))))$ $\subseteq X \setminus (F^+(V_1) \mathbf{I} F^-(V_2))$ [since V_1, V_2 are preopen sets] $F^{+}(V_{1})\mathbf{I} F^{-}(V_{2})$ Therefore, we obtain $\subset \theta m_{\chi} - \operatorname{int}(F^+(cl(V_1))\mathbf{I} F^-(cl(V_2)))$ $(4) \Rightarrow (1)$ Let V_1 , V_2 be any open sets of Y. Since every open is preopen, then V_1 , V_2 are

preopen and by (4) $F^+(V_1) \mathbf{I} F^-(V_2)$ $\subset \theta m_{\chi} - \operatorname{int}(F^+(cl(V_1)) \mathbf{I} F^-(cl(V_2))).$ By Theorem 2-6, *F* is w^{*}-m- continuous.

Theorem 2-10 :

If $F:(X, m_X) \to (Y, \sigma)$ is a multifunction such that *F* is s-m- continuous, then the following properties are satisfying :

Journal of Al-Nahrain University

Vol.13 (1), March, 2010, pp.142-149

1) $F^+(V_1) \mathbf{I} F^-(V_2)$ = $\theta m_X - \operatorname{int}(F^+(V_1) \mathbf{I} F^-(V_2))$ for every open sets V_1, V_2 of Y. 2) $F^+(K_1) \mathbf{U} F^-(K_2) = \theta m_X - cl (F^+(K_1) \mathbf{U})$

- $F^{-}(K_{2})$ for every closed sets K_{1} , K_{2} of Y.
- 3) $\theta m_X cl(F^+(B_1) \mathbf{U} F^-(B_2)) \subseteq F^+(cl(B_1)) \mathbf{U}$
- $F^{-}(cl(B_2))$ for every closed sets B_1, B_2 of Y.

Proof :

(1) Let V_1 , V_2 be any two open subsets of Yand let $x \in F^+(V_1) \mathbf{I} F^-(V_2)$ then there exists $U \in m_X$ containing x such that $F(u) \in V_1^+ \mathbf{I} V_2^-$ for all $u \in m_X - cl(U)$. Thus $F(u) \subseteq V_1$ and $F(u) \mathbf{I} V_2 \neq \phi$ for all $u \in m_X - cl(U)$. This implies that $u \in F^+(V_1)$ and $u \in F^-(V_2)$ for all $u \in m_X - cl(U)$, then $u \in F^+(V_1) \mathbf{I} F^-(V_2)$ for all $u \in m_X - cl(U)$.

Hence $m_x - cl(U) \subseteq F^+(V_1) \mathbf{I} F^-(V_2)$, then $x \in \theta m_x - int(F^+(V_1) \mathbf{I} F^-(V_2))$.

(2) Let K_1 , K_2 be any two closed subsets of Y. Since $Y \setminus K_1$, $Y \setminus K_2$ are open sets in Y, then by (1) and Remark 1-9 we get

$$F^{+}(K_{1}) \mathbf{U} F^{-}(K_{2})$$

$$= (X \setminus F^{-}(Y \setminus K_{1})) \mathbf{U} (X \setminus F^{+}(Y \setminus K_{2}))$$

$$= X \setminus (F^{-}(Y \setminus K_{1}) \mathbf{I} F^{+}(Y \setminus K_{2}))$$

$$= X \setminus \theta m_{X} - \operatorname{int}(F^{-}(Y \setminus K_{1}) \mathbf{I} F^{+}(Y \setminus K_{2}))$$

- $= X \setminus \theta m_X \operatorname{int}((X \setminus F^+(K_1)) \mathbf{I})$
- $(X \setminus F^-(K_2)))$

$$= X \setminus \theta m_X - \operatorname{int}(X \setminus (F^+(K_1) \operatorname{U} F^-(K_2)))$$

$$= \theta m_{X} - cl \left(F^{+}(K_{1}) \mathbf{U} F^{-}(K_{2}) \right)$$

(3)Let *B*₁, *B*₂ be any two closed subsets of *Y*, the by (2) we get:

$$= \theta m_{\chi} - cl (F^{+}(B_{1}) \mathbf{U} F^{-}(B_{2}))$$

= $F^{+}(B_{1}) \mathbf{U} F^{-}(B_{2})$
 $\subseteq F^{+}(cl (B_{1})) \mathbf{U} F^{-}(cl (B_{2}))$

Theorem 2-11 :

If $F:(X, m_X) \to (Y, \sigma)$ is a multifunction such that *F* is s-m- continuous, then the following properties are satisfying :

(1)
$$F^{-}(cl_{\theta}(B_{1})) \mathbf{U} F^{+}(cl_{\theta}(B_{2}))$$

$$= \theta m_{X} - cl (F^{-}(cl_{\theta}(B_{1})) \mathbf{U} F^{+}(cl_{\theta}(B_{2}))) \text{ for every subsets } B_{1}, B_{2} \text{ of } Y.$$
(2) $F^{-}(K_{1}) \mathbf{U} F^{+}(K_{2})$

$$= \theta m_{X} - cl (F^{-}(K_{1}) \mathbf{U} F^{+}(K_{2})) \text{ for every } \theta \text{ -closed sets } K_{1}, K_{2} \text{ of } Y.$$
(3) $F^{-}(V_{1}) \mathbf{I} F^{+}(V_{2})$

$$= \theta m_{X} - \operatorname{int}(F^{-}(V_{1}) \mathbf{I} F^{+}(V_{2})) \text{ for every}$$

 θ -open sets V_{1}, V_{2} of Y .

Proof :

(1)Let B_1 , B_2 be any subsets of Y, then $cl_{\theta}(B_1)$ and $cl_{\theta}(B_2)$ are closed in Y. By Theorem 2-10(2), we get :

$$F^{-}(cl_{\theta}(B_{1})) \mathbf{U} F^{+}(cl_{\theta}(B_{2}))$$

= $\theta m_{\chi} - cl \left(F^{-}(cl_{\theta}(B_{1})) \mathbf{U} F^{+}(cl_{\theta}(B_{2}))\right)$

- (2) Let K_1 , K_2 be θ -closed sets of Y, then $cl_{\theta}(K_1) = K_1$ and $cl_{\theta}(K_2) = K_2$. Therefore by (1) we get : $F^-(K_1) \mathbf{U} F^+(K_2)$ $= \theta m_x - cl (F^-(K_1) \mathbf{U} F^+(K_2))$
- (3) let V₁, V₂ be θ-open sets of Y, then Y \ V₁ and Y \ V₂ are θ-closed and by (2), we get :

$$F^{-}(Y \setminus V_{1}) \mathbf{U} F^{+}(Y \setminus V_{2})$$

$$= \theta m_{X} - cl (F^{-}(Y \setminus V_{1}) \mathbf{U} F^{+}(Y \setminus V_{2})),$$
hence $X \setminus (F^{+}(V_{1}) \mathbf{I} F^{-}(V_{2})) =$

$$(X \setminus F^{+}(V_{1})) \mathbf{U} (X \setminus F^{-}(V_{2}))$$

$$= \theta m_{X} - cl ((X \setminus F^{+}(V_{1})) \mathbf{U} (X \setminus F^{-}(V_{2})))$$

$$= \theta m_{X} - cl (X \setminus (F^{+}(V_{1})) \mathbf{I} F^{-}(V_{2})))$$

$$= X \setminus \theta m_{X} - int(F^{+}(V_{1})) \mathbf{I} F^{-}(V_{2}))$$
Therefore we have :
$$F^{-}(V_{1}) \mathbf{I} F^{+}(V_{2})$$

 $= \theta m_X - \operatorname{int}(F^{-}(V_1) \mathbf{I} F^{+}(V_2)).$

Remark 2-12:

For Theorem 2-11, we have the following : If F is s-m- continuous, then

- (1) $F^{-}(cl_{\theta}(B_{1})) \mathbf{U} F^{+}(cl_{\theta}(B_{2}))$ is θ -closed set of *X*, for every subsets B_{1}, B_{2} of *Y*.
- (2) $F^{-}(K_1) \mathbf{U} F^{+}(K_2)$ is θ -closed set of X, for every θ -closed sets K_1, K_2 of Y.

(3) $F^{-}(V_1) \mathbf{I} F^{+}(V_2)$ is θ -open set of X, for every θ -open sets V_1, V_2 of Y.

Definition 2-13 [12]:

A nonempty set X with a minimal structure m_X is said to be m-connected if X can not be written as the union of two nonempty disjoint m_X -open sets.

Definition 2-14 [13]:

A topological space (X, τ) is said to be semi-connected (resp. preconnected, α -connected, β - connected) if X can not be written as the union of two nonempty disjoint semi-open (resp. preopen, α -open, β -open) sets.

Theorem 2-15 :

Let (X, m_x) be a nonempty set with a minimal structure m_x satisfying property (β) and (Y, σ) a topological space. If $F:(X, m_x) \to (Y, \sigma)$ is w^{*}-m-continuous surjective multifunction such that F(x) is connected for each $x \in X$ and (X, m_x) is m-connected, then (Y, σ) is connected.

Proof :

Suppose that (Y, σ) is not connected. Then there exist non-empty open sets $U, V \in \sigma$ such that $U \mathbf{I} V = \phi$ and $U \mathbf{U} V = Y$.

Since F(x) is connected for each $x \in X$, either $F(x) \subset U$ or $F(x) \subset V$. If $x \in F^+(U \cup V)$, then $F(x) \subset U \cup V$ and hence $x \in F^+(U) \cup F^+(V)$. Moreover, since F is surjective, there exist x and y in X such that $F(x) \subset U$ and $F(y) \subset V$, hence $x \in F^+(U)$ and $y \in F^+(V)$. Therefore, we obtain the following :

- 1) $F^+(U) \mathbf{U} F^+(V) = F^+(U \mathbf{U} V) = X$
- 2) $F^+(U)$ **I** $F^+(V) = F^+(U$ **I** $V) = \phi$
- 3) $F^+(U) \neq \phi$ and $F^+(V) \neq \phi$

Now, we show that $F^+(U)$ and $F^+(V)$ are m_x -open in X.

Let $x \in F^+(U)$, then $F(x) \subset U$, hence $F(x) \mathbf{I} \ U \neq \phi$. Thus $x \in F^-(U)$ and $x \in F^+(U) \mathbf{I} \ F^-(U)$. Since F is w^{*}-mcontinuous, then there exists $W \in m_X$ containing x such that $F(w) \in [cl(U)]^+ \mathbf{I} [cl(U)]^$ for all $w \in m_X - cl(W)$. That is $w \in F^+(cl(U)) \mathbf{I} F^-(cl(U))$ for all $w \in m_X - cl(W)$, hence

 $m_x -cl(W) \subset F^+(cl(U))\mathbf{I} F^-(cl(U))$. Then we get $m_x -cl(W) \subset F^+(cl(U)) = F^+(U)$ since U is clopen. Therefore $x \in \theta m_x - int(F^+(U))$, that is $F^+(U)$ is θm_x -open. Since X satisfying (β) then $F^+(U)$ is m_x -open.

Similarly, we obtain $F^+(V)$ is m_x -open in X. Consequently, this shows that (X, m_x) is not m-connected. This completes the proof.

Corollary 2-16 :

Let (X, τ) and (Y, σ) be topological spaces and $F: (X, \tau) \rightarrow (Y, \sigma)$ be a surjective multifunction such that F(x) is connected for each $x \in X$. If (X, τ) is connected (resp. semi-connected, preconnected, α -connected, β -connected) and F is w^{*}-m-continuous (resp. semicontinuous, percontinuous, α -continuous, β -continuous), then (Y, σ) is connected.

Proof:

Let $m_x = \tau$ (resp. so(X), po(X), $\alpha(X)$, $\beta(X)$) and $F: (X, m_x) \to (Y, \sigma)$ be w^{*}-m-continuous surjective multifunction such that F(x) is connected for each $x \in X$. Then by Theorem 2-15 we obtain the result.

Definition 2-17 [9] :

A nonempty set X with a minimal structure m_X is said to be m-compact if every cover of X by m_X -open sets has a finite subcover.

A subset K of a nonempty set X with a m-structure m_X is said to be m-compact if every cover of K by m_X -open sets has a finite subcover.

Definition 2-18 [9] :

A topological space (X, τ) is said to be quasi H-closed if for every open cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X, there exists a finite subset Δ_0 of Δ such that $X = \mathbf{U}\{cl(U_{\alpha}) : \alpha \in \Delta_0\}$.

Theorem 2-19 :

Let $F:(X, m_X) \to (Y, \sigma)$ is w^{*}-mcontinuous surjective multifunction such that F(x) is m-compact for each $x \in X$. If (X, m_X) is m-compact, then (Y, σ) is quasi H-closed.

Proof :

Let $\{V_{\alpha} : \alpha \in \Delta\}$ be any open cover of *Y*. For each $x \in X$, F(x) is compact and there exists a finite subset $\Delta(x)$ of Δ such that $F(x) \subset \mathbf{U}\{V_{\alpha} : \alpha \in \Delta(x)\}$. Now, set $V(x) = \mathbf{U}\{V_{\alpha} : \alpha \in \Delta(x)\}$, then we have $F(x) \subset V(x)$.

Since *F* is w^{*}-m-continuous, there exists $U(x) \in m_x$ containing *x* such that $F(u) \in [cl(V(x))]^+ \mathbf{I} [cl(V(x))]^-$ for all $u \in m_x - cl(U(x))$ this implies that

$$\begin{split} m_{X} &-cl\left(U\left(x\right)\right) \subset F^{+}(cl\left(V\left(x\right)\right)) \mathbf{I} \\ F^{-}(cl\left(V\left(x\right)\right)) \\ \Rightarrow & m_{X} &-cl\left(U\left(x\right)\right) \subset F^{+}(cl\left(V\left(x\right)\right)) \\ \Rightarrow & F(m_{X} &-cl\left(U\left(x\right)\right)) \subset cl\left(V\left(x\right)\right)) \\ \Rightarrow & F(U\left(x\right)) \subset F(m_{X} &-cl\left(U\left(x\right)\right)) \subset cl\left(V\left(x\right)\right) \\ \Rightarrow & F(U\left(x\right)) \subset cl\left(V\left(x\right)\right) \\ \Rightarrow & F(U\left(x\right)) \subset cl\left(V\left(x\right)\right) \\ \end{split}$$

The family $\{U(x): x \in X\}$ is a cover of X by m_x -open sets.

Since X is m-compact, there exists a finite number of points, say, $x_1, x_2, ..., x_n$ in X such that $X = \mathbf{U}\{U(x_i): x_i \in X, i = 1, ..., n\}$. Hence we obtain

 $Y = F(X) = \mathbf{U}\{F(U(x_i)) : i = 1,...,n\}$ $\subset \mathbf{U}\{cl(V(x_i)) : i = 1,...,n\}$ $\subset \mathbf{U}\{cl(V_{\alpha}) : \alpha \in \Delta(x_i), i = 1,...,n\}.$ This show that (Y, σ) is quasi H-closed.

Definition 2-20 [9] :

Let (X, m_X) be a m-structure space and $A \subseteq X$. The set $\theta m_X - fr(A)$ $= \theta m_X - cl(A) \setminus \theta m_X - int(A)$ is said to be θm_X -frontier of A.

Theorem 2-21 [9] :

Let (X, m_X) be a m-structure space and $A \subseteq X$, then

$$\begin{aligned} \theta m_{X} &- fr(A) \\ &= \theta m_{X} - cl(A) \mathbf{I} \ \theta m_{X} - cl(X \setminus A) \end{aligned}$$

Theorem 2-22 :

Let X be a non empty set with a m-structure m_x and (Y, σ) a topological space. The set of all points x of X of which a multifunction $F:(X, m_x) \to (Y, \sigma)$ is not w^{*}-m-continuous is identical with the union of the θm_x -frontier of the inverse images of the closures of open sets which containing and meeting F(x).

Proof :

Let x be a point of X at which F is not w^{*}-m- continuous. Then there exists an open sets V_1, V_2 in Y such that $F(x) \in V_1^+ \mathbf{I} V_2^-$ and such that $F(u) \notin [cl(V_1)]^+ \mathbf{I} [cl(V_2)]^-$ for every $U \in m_X$ containing x and for all $u \in m_X - cl(U)$.

Hence $u \notin F^+(cl(V_1)) \mathbf{I} F^-(cl(V_2))$ for all $u \in m_x - cl(U)$, then

$$m_{X} - cl(U) \not\subset F^{+}(cl(V_{1})) \mathbf{I} F^{-}(cl(V_{2}))$$
thus
$$m_{Y} - cl(U) \mathbf{I} (X \setminus (F^{+}(cl(V_{1}))) \mathbf{I})$$

 $F^{-}(cl(V_{2}))) \neq \phi$. By definition 1-7, we have $x \in \theta m_{x} - cl(X \setminus (F^{+}(cl(V_{1}))\mathbf{I}))$

 $F^{-}(cl(V_{2})))) \text{ Since } \qquad x \in F^{+}(V_{1}) \mathbf{I} F^{-}(V_{2})$

 $\subseteq F^+(cl(V_1)) \mathbf{I} F^-(cl(V_2))$

 $\subseteq \theta m_{X} - cl \left(F^{+}(cl (V_{1})) \mathbf{I} F^{-}(cl (V_{2}))\right), \quad \text{we}$ have by Theorem 2-21

$$x \in \theta m_{X} - fr(F^{+}(cl(V_{1})) \mathbf{I} F^{-}(cl(V_{2}))).$$

Conversely, if *F* is w^{*}-m- continuous at *x*, then for any open sets V_1, V_2 in Y such that $F(x) \in V_1^+ \mathbf{I} V_2^-$, there exists $U \in m_x$ containing *x* such that $F(u) \in [cl(V_1)]^+ \mathbf{I} [cl(V_2)]^$ for all $u \in m_x - cl(U)$.

Hence

$$m_{X} - cl(U) \subset F^{+}(cl(V_{1})) \mathbf{I} F^{-}(cl(V_{2})).$$

Therefore, we obtain $x \in m_x - cl(u)$

 $\subset \theta m_{\chi} - \operatorname{int}(F^+(cl(V_1)) \mathbf{I} F^-(cl(V_2))).$ This contradicts that

$$x \in \theta m_{X} - fr(F^{+}(cl(V_{1})) \mathbf{I} F^{-}(cl(V_{2}))).$$

الخلاصة

References

- Maki H., On generalizing semi-open and preopen sets, Report for meeting on Topological Spaces Theory and its Application, Yatsushiro College of Technology, (13-18) 1996.
- [2] Velicko N. V., H-closed topological space, Math. Sb., 70 (98-112) 1966 = Amer. Math. Soc. Transl. 78(2)(103-118) 1968.
- [3] Al-Asadi B. J., On some forms of Mcontinuous multifunction, Al-Mustansiriya J. Sci. Vol.18 No.1, (67-80) 2007.
- [4] Al-Asadi B. J., On weakly^{*}-M-continuous multifunctions, Al-Mustansiriya J. Sci. Vol.19No.2, (95-105) 2008.
- [5] Najastad O., On some classes of nearly open sets, Pacific J. Math.15 (961-970) 1965.
- [6] Mashhour A. S., Abd El-Monsef and El-Deep N., On Pre-continuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (47-53) 1982.
- [7] Levine N., Semi-open sets and semicontinuity in topological spaces, Amer. Math. Monthly 70 (36-41) 1963.
- [8] Abd El-Monsef, El-Deep S. N. and Mahmoud R. A., β -open sets and continuous mapping, Bull. Fac. Sci. Assiut Univ. 12(77-90) 1983.
- [9] Noiri, T. and Popa, V., A Unified Theory of Weak Continuity for Multifunctions, Universitatea dinbacau stud II cercetari stintifice, Seria: Matematica Nr.16 (167-200) 2006.
- [10] Kovacevic I., Subsets and Paracompactness Univ. Unovomsadu Rad. Prirod.-Math. Fac. Sev. Math 14, (79-87) 1984.
- [11] Przemski M., Some generalizations of continuity and quasicontinuity of multyivalued maps, Demonstratio Math. 26, (81-400) 1993.
- [12] Popa, V. and Noiri, T., On the definitions of some generalized forms of continuity under minimal conditions, MenFac. Sci. Kochi Univ.Ser. A Math. 22, (9-18) 2001.
- [13] Noiri, T. and Popa, V., On Upper and lower M-continuous multifunction, Filomat 14, (73-86) 2000.

في هذا البحث قدمنا بعض المكافئات للدوال المتعددة القيم الضعيفة المستمرة من النمط m وقمنا بإيجاد بعض النتائج بما يخص الدوال المتعددة القيم القوية من النمط m