ON MARCINKIEWICZ-ZYGMUND INEQUALITIES IN $\mathbf{L}_{\mathbf{P}, \mu}$-SPACES, $0<\mathbf{p} \leq \mathbf{1}$

Saheb K. Al Saidy
 Department of Mathematics, College of Science, Al-Mustansiriya University.

Abstract

We found the relationships between Marcinkiewicz-inequalities and linear trigonometric operators in the quasi-normed spaces $\mathrm{L}_{\mathrm{p}, \mu}, 0<\mathrm{p} \leq 1$.

Introduction

Here, we assert the Marcinkiewz-Zygmund inequalities which are given by the following theorem. [1]. If $\mathrm{n} \geq 1$ is an integer, $1<\mathrm{p}<\infty$, and S is a trigonometric polynomial of order at most n , then:

$$
\begin{align*}
\int_{-\pi}^{\pi}|S(t)|^{p} d t & \left.\leq \frac{c_{1}}{2 n+1} \sum_{j=1}^{2 n+1} \right\rvert\, S\left(\frac{2 \pi j}{2 n+1}\right)^{p} \tag{1}\\
& \leq c_{2} \int_{-\pi}^{\pi}|S(t)|^{p} d t
\end{align*}
$$

Where c_{1} and c_{2} are positive constants depending only on p , but not on S or n . These inequalities have an important application which deduce the mean boundedness of the trigonometric interpolation polynomial that of the n-th partial sum operator of the trigonometric.

These inequalities have been studied by many authors in connection with orthogonal polynomials both in the case of Lagrange interpolation and Jacobi weights on $[-1,1]$ ([2], [3]).

Many authors studied the convergence of the linear operators in different spaces like ([4], [5]), [6], [7].

In this paper, we shall investigate the relation ship between these operators and inequalities similar to (1) but in the quasinorm $\mathrm{L}_{\mathrm{p}, \mu}$-space, $0<\mathrm{p} \leq 1$.

Definitions and Notations

Let f be a bounded function defined on $[-\pi, \pi]$, and μ be a positive measure on a measure space Σ. For a μ-measurable function f, we write:

$$
\begin{equation*}
\|f\|_{\mathrm{p}, \mu}=\left(\int|\mathrm{f}(\mathrm{x})|^{\mathrm{p}} \mathrm{~d} \mu(\mathrm{x})\right)^{1 / \mathrm{p}}, 0<\mathrm{p}<1 \tag{2}
\end{equation*}
$$

The space $L_{p, \mu}$ consists of all functions f for which $\|f\|_{p, \mu}<\infty$.

Mhaskar H. N. and Prcstin J. proved the following theorem [8].

Theorem

For a trigonometric polynomial S on $[-\pi, \pi]$,
$1<\mathrm{p}<\infty$, we get:
$\|S\|_{p, \mu} \leq c_{p}\|s\|_{p, v} \leq c_{2}\|S\|_{p, \mu}$
μ is the Lebesgue measure and v is a discrete measure.

Now, let us consider two σ-finite measures μ and v on a measure space Σ and corresponding operators (when defined) (f \in $\mathrm{L}_{\mathrm{p}, \mathrm{v}}, 0<\mathrm{p} \leq 1$).

$$
\mathrm{T}(\tau, \mathrm{f}, \mathrm{x})=\int \mathrm{f}(\mathrm{t}) \mathrm{k}(\mathrm{x}, \mathrm{t}) \mathrm{d} \tau(\mathrm{t}), \tau=\mu, v
$$

where k is a symmetric function. We assume that k is essentially bounded as well as integrable with respect to all the product measures $\mu \times \mu, v \times v$ and $\mu \times v$. We also consider two weight functions w and W which are both bounded measurable and positive almost everywhere with respect to both μ and v.

For $0<p \leq 1$, by condition (4(p)) we mean $\left\|w(w W)^{-1 / p} T(v, f)\right\|_{p, \mu}$

$$
\begin{equation*}
\leq \mathrm{c}\left\|\mathrm{~W}(\mathrm{wW})^{-1 / \mathrm{p}_{\mathrm{f}}}\right\|_{\mathrm{p}, \mathrm{v}} \tag{p}
\end{equation*}
$$

By (5(p)) we also mean that:

$$
\begin{align*}
& \| \mathrm{w}(\mathrm{wW})^{-1 / \mathrm{p}_{\mathrm{T}}(\mu, \mathrm{f}) \|_{\mathrm{p}, v}} \\
& \quad \leq \mathrm{c} \| \mathrm{W}(\mathrm{wW})^{-1 / \mathrm{p}_{\mathrm{f}} \|_{\mathrm{p}, \mu}} \tag{5p}
\end{align*}
$$

where we note that the constants in both inequalities depend on μ and not on v.

We also denote by (6(p)):

$$
\begin{align*}
& \| \mathrm{w}(\mathrm{wW})^{-1 / \mathrm{p}_{\mathrm{T}}(\mu, \mathrm{f}) \|_{\mathrm{p}, \mu}} \\
& \quad \leq \mathrm{c} \| \mathrm{W}(\mathrm{wW})^{-1 / \mathrm{p}_{\mathrm{f}} \|_{\mathrm{p}, \mu}} \tag{p}
\end{align*}
$$

Main Results

Now, we prove the following theorem which shows a close connection between these conditions in the quasi normed space
$\mathrm{L}_{\mathrm{p}, \mu}, 0<\mathrm{p} \leq 1$.

Theorem (1):

Let μ and v be σ-finite measures on a measure space $\Sigma, 0<p \leq q=\mathrm{p}^{\prime} \leq 1$ and p^{\prime} be such that $\mathrm{p}^{\prime}=\mathrm{q}=1-\mathrm{p}$. Further suppose that w and W^{-1} are measurable bounded weight functions both in $L_{p, \mu}$ and $L_{p, v}$.
(a) Let $\mathrm{f}, \mathrm{g}: \Sigma \longrightarrow \mathrm{R}$, and $\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{k}(\mathrm{x}, \mathrm{t})$ be integrable with respect to the product measures $\mu(\mathrm{t}) \times v(\mathrm{x})$. Then the following reciprocity law holds:
$\int \mathrm{fT}(\mu ; \mathrm{g}) \mathrm{d} v=\int \mathrm{T}(v ; \mathrm{f}) \mathrm{g} \mathrm{d} \mu$
(b) The conditions (4(p)) and (5(q)) $(0<\mathrm{p}<\mathrm{q}<=1)$ are equivalent. The conditions (6(p)) and (6(q)) are equivalent.

Proof:

By Fubini's theorem and the fact that $\mathrm{k}(\mathrm{x}, \mathrm{t})=\mathrm{k}(\mathrm{t}, \mathrm{x})$, we have:

$$
\begin{aligned}
& \int f(x) T(\mu ; g, x) d v(x) \\
& =\int f(x) \int g(t) k(x, t) d \mu(t) d v(x) \\
& =\int g(t) \int f(x) k(x, t) d v(x) d \mu(t) \\
& =\int g(t) T(v ; f, t) d \mu(t)
\end{aligned}
$$

This proves part (a)
To prove (b), we first prove that (5(q)) implies (4(p)).

Let $\mathrm{g}: \Sigma \longrightarrow \mathrm{R}$, be an arbitrary μ-measurable, simple function such that $\|g\|_{p^{\prime}, \mu} \leq 1$. Then:

$$
\left\|w(w W)^{-\frac{1}{p}}\right\|_{1, \mu}
$$

$$
=\left[\int\left(\mathrm{w}(\mathrm{wW})^{-\frac{1}{\mathrm{p}}}\right)^{\mathrm{p}} \mathrm{w}(\mathrm{wW})^{1-\mathrm{p}}\right]^{\frac{1}{\mathrm{p}}}
$$

$$
\left[\int\left(w(w W)^{-\frac{1}{p}}\right)^{p} w(w W)^{1-p}\right]^{1-\frac{1}{p}}
$$

$$
=c_{p}\left\|W^{-\frac{1}{p}}\right\|_{p, \mu}\left\|W^{-\frac{1}{p^{\prime}}}\right\|_{p^{\prime}, \mu}
$$

$$
=\mathrm{c}_{\mathrm{p}}\|\mathrm{w}\|_{1, \mu}^{\frac{1}{\mathrm{p}^{\prime}}}\left\|\mathrm{w}^{-1}\right\|_{1, \mu}^{\frac{1}{\mathrm{p}}}
$$

Which shows that $w(w W)^{-\frac{1}{p}} \in L_{p, \mu}$.
Since g is μ-essentially bounded, the function $\mathrm{T}\left(\mu ; \mathrm{w}(\mathrm{Ww})^{-\frac{1}{\mathrm{p}}} \mathrm{g}\right)$ is defined and the conditions of part (a) are also satisfied. Then using the reciprocity law and the fact that:

$$
\begin{gathered}
\mathrm{W}^{-1}(\mathrm{wW})^{\frac{1}{\mathrm{p}}} \leq \mathrm{w}(\mathrm{wW})^{-\frac{1}{\mathrm{p}^{\prime}}, \mathrm{O}\left(\mathrm{p}^{\prime}\right)} \\
\mathrm{w}(\mathrm{wW})^{-\frac{1}{\mathrm{p}}} \leq \mathrm{W}^{-1}(\mathrm{wW})^{\frac{1}{\mathrm{p}^{\prime}}}
\end{gathered}
$$

and as in the lines above, we obtain:

$$
\begin{aligned}
& \left|\int \mathrm{w}(\mathrm{wW})^{-\frac{1}{\mathrm{p}}} \mathrm{~T}(v ; f) \mathrm{g} \mathrm{~d} \mu\right| \\
= & \left|\int \mathrm{fT}\left(\mu ; \mathrm{w}(\mathrm{wW})^{-\frac{1}{\mathrm{p}}}\right) \mathrm{g} \mathrm{dv}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|\mathrm{W}(\mathrm{wW}){ }^{-\frac{1}{\mathrm{p}}}\right\|_{\mathrm{f}} \|_{\mathrm{p}, \mu} \\
& \left\|w(w W)^{-\frac{1}{p^{\prime}}} T\left(\mu ; w(w W)^{-\frac{1}{p}}\right) g\right\|_{p^{\prime}, v} \\
& \leq \mathrm{c}\left\|W(\mathrm{wW})^{-\frac{1}{\mathrm{p}}} \mathrm{f}\right\|_{\mathrm{p}, v} \\
& \left.\| W(w W){ }^{-\frac{1}{p^{\prime}}} \mathrm{w}(w W)\right)^{-\frac{1}{p_{g}}} \|_{p^{\prime}, \mu} \\
& \leq \mathrm{c}\left\|\mathrm{~W}(\mathrm{wW})^{-\frac{1}{\mathrm{p}}}\right\|_{\mathrm{f}} \|_{\mathrm{p}, v}
\end{aligned}
$$

Since:

$$
\begin{aligned}
& \left\|w(w W)^{-\frac{1}{\mathrm{p}}} \mathrm{~T}(v ; \mathrm{f})\right\|_{\mathrm{p}, \mu} \\
& \leq \sup \left|\int \mathrm{w}(\mathrm{wW})^{-\frac{1}{\mathrm{p}}} \mathrm{~T}(v ; \mathrm{f}) \mathrm{g} \mathrm{~d} \mathrm{\mu}\right|
\end{aligned}
$$

Where the supremum is taken over all μ-measurable simple function g with $\|\mathrm{g}\|_{\mathrm{p}^{\prime}, \mu} \leq 1$, we have proved (4(p)) similarly the condition (4(p)) implies (5(q)).

Finally, we observe that when $\mu=v$, the conditions (4(p)), (6(p)) and (5(p)) are the same. This completes the proof of part (b).

In order to rate theorem (1) with Marcinkiewiz-Zygmund type (M-Z) inequalities, we restrict ourselves to the case $\mathrm{w}=\mathrm{W}$. We consider an increasing sequence of sets $\left\{\pi_{\mathrm{k}}\right\}$,
$\pi_{\mathrm{k}} \subseteq \pi_{\mathrm{k}+1}, \mathrm{k}=0,1, \ldots$, which may be thought of as subsets of $L_{p, \mu}$ and $L_{p, v}$. And consider a sequence of symmetric kernel function k_{k} and operators T_{k} defined by (if possible):

$$
\begin{aligned}
\mathrm{T}_{\mathrm{k}}(\tau ; \mathrm{f}, \mathrm{x}) & =\int \mathrm{f}(\mathrm{t}) \mathrm{k}_{\mathrm{k}}(\mathrm{x}, \mathrm{t}) \mathrm{d} \tau(\mathrm{t}) \\
\tau & =\mu, \mathrm{v}, \mathrm{k}=1,2, \ldots
\end{aligned}
$$

Assume that there exist integers $\mathrm{a} \geq 1$ and b such that $\mathrm{T}_{\mathrm{k}}(\tau ; \mathrm{f}) \in \pi_{\mathrm{ak}+\mathrm{b}}, \tau=\mu, v ; \mathrm{k}=1,2$,

Assume that the property $(7 n)$ is such that:
$\mathrm{T}_{\mathrm{k}}(\tau, \mathrm{p})=\mathrm{p}, \mathrm{p} \in \pi_{\mathrm{k}}, \tau=\mu, v, \mathrm{k}=1,2, \ldots, \mathrm{n}$
where v will be chosen depending on n, so that, the condition (7 n) will be satisfied.

The conditions ($4 \mathrm{n}(\mathrm{p})$), $(5 \mathrm{n}(\mathrm{p}))$ and $(6 \mathrm{n}(\mathrm{p}))$ denote the fact that each of the operators T_{k}, $1 \leq \mathrm{k} \leq \mathrm{n}$ satisfies the condition (4(p)) (respectively (5(p)), (6(p)).

Clearly, the condition ($5 \mathrm{n}(\mathrm{p})$) (with $\mathrm{w}=\mathrm{W}$) and (7n) imply the simpiler $\mathrm{M}-\mathrm{Z}$ inequality:

$$
\begin{equation*}
\left\|\frac{w^{\frac{p}{p}}}{p}\right\|_{p, v} \leq c\| \|_{p} \frac{p-2}{p} p \|_{p, \mu}, p \in \pi_{n} \ldots \ldots(8) \tag{8}
\end{equation*}
$$

The condition will be referred as:

$$
\begin{align*}
& \left\|\frac{w^{\frac{p}{p}} \frac{p}{p} \|_{p, \mu}}{} \leq c_{1}\right\| w^{\frac{p-2}{p}} \mathrm{p} \|_{p, v} \\
& \tag{9}\\
& \leq c_{2}\left\|w^{\frac{p-2}{p}}\right\|_{p, \mu}, p \in \pi_{n}
\end{align*}
$$

The inequality (8) will be called $\mathrm{SMZ}_{\mathrm{n}}(\mathrm{p})$ and (9) will be called $\mathrm{MZ}_{\mathrm{n}}(\mathrm{p})$ or full $\mathrm{M}-\mathrm{Z}$ inequality.

Theorem (2):

Let μ, v be as in theorem (1), $\mathrm{n} \geq 1$ be an integer, $\mathrm{w}=\mathrm{W}$ and $\mathrm{w}, \quad \mathrm{w}^{-1}$ be in both $\mathrm{L}_{\mathrm{p}, \mu}$ and $L_{p, v}$, then if $0<p \leq 1$ and $\operatorname{SM}_{a n+b}(q)$ holds. The condition $(6 n(p))$ implies $(4 n(p))$.

Proof:

Let $1 \leq \mathrm{k} \leq \mathrm{n}$ be an integer and $(6 \mathrm{n}(\mathrm{p}))$ hold.
By theorem (1), we get $(6 n(q))$. Now, let
$w_{p^{\prime}}=w^{\frac{p^{\prime}-2}{p^{\prime}}}$. Since $T_{k}(\mu ; f) \in \pi_{a n+b}$, for all f for which it is defined, the condition $\operatorname{SM}_{\mathrm{an}+\mathrm{b}}(\mathrm{q})$ and ($6 \mathrm{n}(\mathrm{q})$) together imply condition $\mathrm{SM}_{\mathrm{an}+\mathrm{b}}(\mathrm{q})$ and $(6 \mathrm{n}(\mathrm{q}))$ together imply:

$$
\begin{aligned}
\left\|\mathrm{w}_{\mathrm{p}^{\prime}} \mathrm{T}_{\mathrm{k}}(\mu ; \mathrm{f})\right\|_{\mathrm{p}^{\prime}, v} & \leq \mathrm{c}\left\|\mathrm{w}_{\mathrm{p}^{\prime}} \mathrm{T}_{\mathrm{k}}(\mu ; \mathrm{f})\right\|_{\mathrm{p}^{\prime}, \mu} \\
& \leq \mathrm{c}\left\|\mathrm{w}_{\mathrm{p}^{\prime}}\right\|_{\mathrm{p}^{\prime}, \mu}
\end{aligned}
$$

Which is the condition ($5 \mathrm{n}(\mathrm{q})$) which implies (4n(p)).

Conclusion

We are using two σ-finite measures μ and v on a measure space \sum and define a new trigonometric operators

$$
\mathrm{T}(\tau, \mathrm{f}, \mathrm{x})=\int \mathrm{f}(\mathrm{t}) \mathrm{K}(\mathrm{x}, \mathrm{t}) \mathrm{d} \tau(\mathrm{t}), \tau=\mu, v
$$

and K is a symetric function then we investigate the relation ship between these operators and the inequalities similar to (1) in the quasi-norm

$$
L_{p, \mu}-\text { space }, o<p £ 1,
$$

References

[1] Zygmund A., "Trigonometric Series", Cambridge University Press, Cambridge, 1977.
[2] Lubinsky D. S., Mata A. and Nevai P., "Quadrature Sums Involving $p^{\text {th }}$ Powers of Polynomials", SIAM J. Math.; Anal., 18, 1987, pp 531-544.
[3] Xu Y., " Mean Convergence of Generalized Jacobi Series and Interpolating Polynomials", I. J. Approx. Theory 72, 1993, pp 237-251.
[4] Eman H. M., "A Study on the Best Approximation of Functions in the Space $L_{p}(\mu), 0<p \leq \infty "$, M.Sc. Thesis, Baghdad University, 2007.
[5] Nabaa M., "On the Monotone and Comonotone Approximation", M.Sc. Thesis, Kufa University, 2004 .
[6.] O. Duman. " Statistical Approximation for periodic functions" ,Demonstratio Mathematica, 36, f4, 2003, pp 873-878.
[7] A. Pinkus. "Weierstrass and Approximation Theory "Journal of Approximation Theory, 107, 2000, pp.1-66.
[8] Mhaskar H. N. and Prestin J., "On Marcinkiewicz-Zygmund Type Inequalities", Research was Supported in Part, by National Science Foundation Grant DMS 9404513, The Air Force Office of Scientific Research and the

Alexander Von Himboldt Foundation, January 1997.

الخلاصة

في هذا البحث وجدنا العاقة بين متر اجحات مارسينز
زيكموند و المؤثرات المثلثية الخطية في الفضاء الشبه قياسي
$.0<\mathrm{p} \leq 1 ، \mathrm{~L}_{\mathrm{p}, \mu}$

