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Abstract

A computational investigation has been carried out in the field of non-reativistic charged-
particle optics using the charge density method as a boundary value problem with the aid of a
personal computer under the absence of space-charge effects. This work has been concentrated on
designing a two-electrode electrostatic immersion lens whose electrodes are cylindrica in shape
separated by an air gap. The variable parameters of the two electrodes are the applied voltage ratio
and the radii of the two cylindrical electrodes. The axial potential distribution of an electrostatic
immersion lens has been computed by taking into consideration the distribution of the charge
density due to the voltages applied on the two cylindrical eectrodes. Potentials have been
determined anywhere in space by using Coulomb’s law. The optical properties of the immersion
lens have been investigated under finite and zero magnification conditions.

Introduction

The charge density method for solving
Laplace’s equation was first applied in
electron-optica systems by Cruise [1]. This
method has been found to give accurate
results, efficient in the use of computer time
and storage, and applicable to a wide range of
lens configurations.. However, in the present
work the system of cylinders under applied
potential has been replaced by a system of
charged rings, which have the same width as
illustrated in Fig.(1).

anmiamns
JIHH I

Fig.(1) : Replacing a series of cylinders
under applied potentials with a series of
charged rings, [2].

Two of the various magnification
conditions that are wel known in electron
optics have been taken into account in the
present work, namely, the finite and the zero
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magnification conditions due to their
resemblance to the trgectory of charged
particles traversing a lens field. Because of the
complex nature of the present problem under
investigation, the following assumptions have
been made: (&) The thickness of the materia
from which the lenses should be constructed is
negligible compared to the radii of the
cylinders (b) The space charge effects are
neglected in order to satisfy exactly the
Laplace’s equation N* = 0 and (c) Non-
relativistic  velocities for the accelerated
charged particles have been taken into
consideration, [3, 4, 5].

The first step in the present method for
calculating the axid potential distribution of a
two-cylinder electrostatic lens is to find the
charge density on each surface of the
conducting sheets from which the lens is
congtructed. In the absence of dielectrics the
dectrogtatic potentia at any point in space is
determined by the free surface charges on the
conductorsin the space [6, 7].
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Fig.(2) : Simple coaxial two-cylinder lens consisting of a large number
of circular stripsin order to obtain the potential
distribution by CDM.

The second step is, therefore, to use the
determined charge density for computing the
potential distribution in the space of the lens.
In applying this method for equidiameter
coaxial cylinders separated by a finite distance
G it has been assumed that the cylinder walls
have negligible thickness so that the potential
in regions which are not very close to the
cylinders is determined smply by the
algebraic sum of the inner and outer charge
sheets [8]. To solve the problem, the cylinders
have been divided into N rings, each ring
carries a charge Q (i = 1, 2, ..., N) which
contributes to the potentials of al the rings
(see Fig.( 2)). The potential of the i-th ring
can be expressed as a combination of the
contributions from al charged rings [6].
Consider the lens cylinders shown in figure 2
of radius r; and length 10 r, [9]. The combined
charge densties on the surfaces of the
cylinders are s; =Q; /4pr.Dz;j, where Dz;
represents the width of the ith rings. If there
are no other charges present then the potential
a any point z in space is given by,

N

U(r2) =—— & sikiK (K 2)DZj oo
P€0i=1

jri

where:
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and K(kzi)is the complete dliptic integral of
the first kind which can be evaluated by the
use  of the  following polynomial
approximation, [10]:

K(kj) =ag +H +612H2 +613H3 +a4H4 +
(bg +byH + byH? + bgH3 +b,yH?) In(1/ H)

where H =1 - k? which is a dimensionless
factor.

The potential V; at a point C in Fig.(2) on
the i-th element is due to a constant charge
density o on each element, which is uniforml
distributed around a circle of radius r.. The

potential V; is given by the following
expression [3],
N
Vi ZQ AjiSi coovimiminiennnneeeeenseis ?3)
i=1

where A;i is a square matrix element. The
above set of equations may be reduced to the
following simple matrix equation,

V=A 4
The column vector ¢ is then obtained by
inverting the matirx A, [2, 11]. Hence, from
equation (4),
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In the present work an iterative procedure
is used to get the inverse of matrix A with the
aid of a computer program based on LU-
Factorization method, [12]. To evauate the
elements of A one needs to know the potential
a the strip j caused by a uniform charge
density o; in the strip i. The matrix element Aji
is given by [9]:

Aji =K (K2 e (6)
where
2r,
k.. = ¢
ji
g4r02 '|'Zji28}é
Zji ‘|Z_i' Z_J|

zj and z; being the mid point of the i-th and
jth ring respectively; they are given by
Zi =(zj+1%7.1)/2 and zj=(zjy1 +2j.1)/2.

It should be noted that whenj isequa to i the
dliptic integral (equation 2) will be infinite
and a singularity in the potential V is caused
but not in A;; itself.

The equations of motion of a charged
particle traveling at a non-relativistic velocity
in an electric field near the axis of a
cylindrically symmetric system can be reduced
to the following paraxial ray equation [13, 14]:

2
R, USdR  UE, _

dz2 2U dz 4uU

where U¢ and U® are the first and second
derivatives of the axia potentid U
respectively. R represents the radia
displacement of the beam from the optical axis
z, and the primes denote a derivative with
respect to z.

The sphericd aberration coefficient Cs and
the chromatic aberration coefficient Cc
referred to the image/object side are calculated
from the following equations, [10].

u-v2 Zi?saeuaro 5 ad)os’
0%

Cs=
16rE Og4EU 5 248U
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where U = U(z) is the axial potentia, the

primes denote derivative with respect to z, and
U; = U(z) is the potentia at the image where
Z = z. The integration given in the above
equations are executed by means of Simpson’s
rule [10, 15]. In the present work, equations
(8) and (9) have been used for computing Cs
and Cc in the image side under various
meagnification conditions.

Results and Discussion

The charge density on the electrodes of an
immersion lens at various values of electrodes
radius r. are shown in figure 3 under
accelerating mode of operation keeping both
lens length L (20 mm) and the air gap width
G(1 mm) constants. The effect of the
cylindrical electrode radius r. on the charge
density distribution taking into account various
values of ro (= 1, 2 and 3 mm) is shown in
Fig.(3). The charge density distributions are
similar in their general form. It is seen that as
the electrode radius r. increases the charge
density decreases, this sStuation may be
explained with the ad of the equation
si = Q; / 4pr.Dz; , which shows that the charge

density is inversely proportional to the
cylindrical electrodes radius r.. The ratio of
the charge density on the terminal ring at the
higher voltage electrode (V2 = 12V), to that on
the corresponding terminal ring at the lower
voltage electrode (V1 = 10V) is found to be
equa 1.2, which is the ratio of the voltages
applied on the two electrodes. It must be made
clear that even at other values of r. the above
mentioned charge density ratio ill equals to
the applied voltage ratio.
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Fig.(3) : Thecharge density distribution on
the two electrodes at various values of
cylindrical eectrode radiusr. where the
voltageratio (V2/V1 =1.2), L (=20 mm) and
G (=1 mm) are kept constant.

The axial potential distribution at various
values of the €ectrode radius rc
(=1, 2, 3 mm) is Fig.(4) under accelerating
mode of operation. There is a field-free region
where E(z) = 0 outside the lens boundaries.
These distributions are similar in their general
form and gradients particularly within the
center of the air gap region. However, as the
radius r. increases, the gradient of the curve
dightly decreases at the electrodes region.
This situation may be explained with the aid of
Coulomb’s law, which states that the axial
potential distribution is inversely proportional
to the radius. Within the air gap region, the
potential on the side of the lower voltage
electrode penetrates the hollow cylindrical
electrode and its gradient diminishes at a
common point (Z = -4 mm) irrespective of the
value of the radius. The value of the potentia
a this zero gradient point is equal to the
voltage applied on the corresponding electrode
(i.e.,, U(2) = 10 V). On the other hand, the
potential on the side of the higher voltage
electrode penetrates the hollow electrode
region and its gradient diminishes a a
common point (Z = +4 mm) where U(z) equals
to that of the applied voltage, i.e. 12 V. Thus
one may conclude that within the range of
values of r; taken into account in the present
work, the effect of the radius variation on the
lens refractive power at the air gap region is
not significant.
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Fig.(4) : Theaxial potential distribution on
the two electrodes at various values of the
electrode radiusr. under accelerating mode
of operation.
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Fig.(5) shows the trgectories of an
electron beam traversing the electrostatic lens
field at various values of both voltage ratio
V2/V1 and the €ectrode radius re.
Computations have shown that as the beam
emerges from the lens field it converges
towards the optica axis provided that V2/V1
does not exceed 25. Under these circumstances
the beam intersects the optical axis once.
However, as V2/V1 exceeds 25, the beam
intersects the axis twice and hence it emerges
divergent; this is due to the increase of the lens
refractive power with the increase of the
voltage ratio. The trgectories are generdly
similar in their form.

The effect of the electrode radius r
(= 1, 2, 3 mm) on the beam trgjectory has been
investigated at various values of V2/V1. The
beam radid displacement at various points
dong the lens axis is affected by varying r..
Furthermore, the radial displacement of the
beam at the exit side increases with increasing
voltage ratio irrespective of the value of r..
The beam is in the state of convergence at all
points on the image side beyond the center of
the gap. At the above mentioned voltage
retios, the trgectories have a crossover within
the ar gap region; this crossover shifts
towards the center of the lens as the electrode
radius r. decreases.
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Fig.(5) : Theelectron beam trajectory in an electrostatic lens under zero magnification
condition at various values of the electrode radiusr. (a) 1 mm (b) 2 mm (c) 3 mm for a
wide range of thevoltageratio (V2/V1=1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 3.0, 3.5,

4.0, 6.0, 8.0, 10.0, 16.0, 18.0, 20 and 25.0).



The aberration coefficients of each lens
have been computed with the aid of the
corresponding trajectory of the electron beam.
Fig.(6) shows the relative spherical aberration
coefficient C/f; of the immersion electrostatic
lens as a function of the voltage ratio V2/V1 at
various values of the electrode radius rc under
zero  magnification  condition.  Electron-
opticaly, the values of Cdf; are high for the
above range of the electrode radius r.. It is
seen that as V2/V1 increases, Cdfi decreases
irrespective of r. until it approaches a
minimum vaue. Beyond this minimum CJf;
increases with the increase of the electrode
radius r.. The following table shows (Cdfi)min
a the corresponding values of V2/V1 and re. It
indicates that the lowest (CJfi)min is achieved
a highV2/V1andlow re.

11.59359 18.0 1
Thus, this result suggests that the

electrode radius r; should be less than (1 mm).
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Fig.(6) : Therelative spherical aberration
coefficient CJ/f; asa function of the voltage
ratio V2/V1 at various values of the electrode
radiusre.
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The relative chromatic  aberration
coefficient C//fi has been computed as a
function of V2/V1 at various vaues of re.
Fig. (7) shows that as V2/V1 exceeds unity,
CJ/fi increase with increassng V2/V1
irrespective of r.. Low values of CJ/fi are
achieved at low values of r.. Thus to achieve
low relative aberration coefficients under zero
magnification conditions r. should be as small
aspossible. Fig.(7) suggeststhat at V2/V1=5
a reasonably good compromise value for
CJ/fi (= 3.2) is achieved which is independent
of re.
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Fig.(7) : Therelative chromatic aberration
coefficient C/fj asa function of the voltage
ratio V2/V1 at various values of the electrode
radiusre.

The image-side focal length ;i of the
electrostatic  immersion lens has been
normalized in terms of the electrode length L
of the hollow cylindrical since L affects the
lens action. Thus the relative image-side focal
length fi/L is a dimensionless quantity. Fig.(8)
shows the variation of fi/L with the voltage
ratio V2/V1 at various values of the electrode
radius r. under zero magnification conditions.
It is seen that a fi/L decrease with increasing
V2/V 1which is due to the increase of the lens
refractive power as the electric field increases
within the air gap. Furthermore, at any value
of the voltage ratio greater than 5, the relative
focal length decreases dightly as the electrode
radius r. decreases. In fact as V2/V lexceeds 5,
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a shallow region for fi/L appears where a
minimum value of fi/L is found for each value
of rc as shown in the following table.

0.389 20.0 1
0.421 18.0 2
0.513 14.0 3
These results indicate that  (fi/L)min

decreases with decreasing r. due to the
confinement of the electric field within the air
gap region. Fig.(8) suggests that in order to
achieve a low relative image-side focal length,
the applied voltage ratio should not be less
than 5 or exceed 20 irrespective of the air gap
width.

1.0E+2

fi/lL

1.0E+1

1.0E+0

1.081 I I I I
0.00 5.00 10.00 15.00 20.00
V2/vV1

Fig.(8) : Therdative image-side focal length
fi/lL asafunction of voltage ratio V2/V1 at
various values of the electrode radiusr,
under zero magnification conditions.

25.00

The electron beam path along the axial
field of the electrostatic lens immersion under
finite magnification condition and accelerating
mode of operation has been considered.
Fig.(9) shows the trgjectories of an electron
beam traversing the eectrostatic field at
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various values of both voltage ratio V2/V1 and
the electrode radius r.. These trgjectories have
been computed with the aid of equation (7)
under two conditions selected for the gradient
of the trgjectory at the object position; these
are R(1) =-0.52 and R’(1) = - 1. The value of
the trajectory gradient at the object position
highly affects the magnification. These
trajectories are similar in their general form.

From Fig.(9) the effect of the electrode
radius rc (= 1, 2, and 3) on the beam trajectory
can be investigated at various values of the
voltage ratio V2/V1. One may see that as the
electrode radius r. increases the radia
displacement R of the beam at the image side
increases. Furthermore, the radial
displacement of the beam increases with
increasing voltage ratio irrespective of the
dectrode radius r.. At the above-mentioned
vaues of V2/V1, the trgectories have a
crossover within the ar gap region; this
crossover shifts towards the center of the lens
as the electrode radius increases.
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Fig.(9) : The electron beam trajectory in an
electrostatic lens under finite magnification
condition at various values of the electrode
radiusr¢ (&) 1 mm (b) 2 mm (c) 3mm for a

wide range of the voltageratio (V2/V1 =1.2,
14,16,18,20,22, 24,30,35,4.0,6.0,

8.0, 10.0, 16.0, 18.0, 20.0, and 25.0).
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The reative  spherica aberration
coefficient has been computed as a function of
the voltage ratio V2/V1 for various vaues of
the dectrode radius r. under finite
magnification condition. The trajectories in
Fig.(9) have been used for computing the
relative spherical aberration coefficient at the
vaues of ro = 1, 2, and 3mm and keeping
constant L and G.

Fig.(10) shows the variation of C/M on a
logarithmic scale with V2/V1. Electron-
opticaly, the vaues of C/M are low for the
above range of the electrode radius re. It is
seen that as V2/V1 increases C/M decreases
irrespective  of the electrode radius r..
Furthermore, C4/M increases with the increase
of the electrode radius r.. Thus, this result
suggests that the electrode radius r. should be
lessthan 1mm in order to achieve low C/M.
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Fig.(10) : The relative spherical aberration
coefficient C/M as a function of the voltage
ratio V2/V1 at various values of the electrode

radiusre.

From the tragjectories shown in figure 9 the
relative chromatic aberration coefficient C/M
has been computed as a function of V2/V1 at
various values of r. where both L and G are
kept constant. Fig.(11) shows the variation of
CJ/M a the values of r. = 1, 2, and, 3 mm.
Electron-optically, the values of CJ/M are
smal for the above range of the electrode
radius rc. It is seen that as V2/V1 increases the
CJ/M decreases irrespective of the electrode
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radius r.. Furthermore, the chromatic
aberration coefficients C4/M increases as the
eectrode radius r¢ increases.
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Fig.(11) : The reative chromatic aberration

coefficient C¢/M asafunction of the voltage

ratio V2/V1 at various values of the electrode
radiusre.

Conclusions

The implementation of the charge density
method on the design of electrostatic lenses
appears to be an excellent tool in the field of
electron-optical design. The cylindrical
immersion lens that has been designed by the
above method is found to have different
optical properties depending upon various
geometrica parameters in addition to the
mode of operation. For instance under zero
magnification mode of operation this lens did
not exhibit acceptable properties from the
electron-optical point of view. However, in the
finite magnification mode of operation the lens
performance was found to be excellent. The
optical properties are highly dependent on the
geometrical factors of the lens such as the
length of the cylinders, and the radius of the
two cylinders. Thus, one could now apply the
charge density method on designing various
types of dectrostatic lenses.
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