Weak Soft Separation Axioms and Weak Soft (1,2)*- D -Separation Axioms in Soft Bitopological Spaces

Sabiha I. Mahmood

Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad-Iraq. Corresponding Author: ssabihaa@uomstansiriyah.edu.iq

Abstract

In this article we introduce and study new types of soft sets in soft bitopological spaces, namely, soft $(1,2)^*$ -difference sets and soft $(1,2)^*$ -b-difference sets by using the notion of soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets and soft $(1,2)^*$ -b-open sets respectively. Furthermore we use these soft sets to define and study new types of soft separation axioms, namely, soft $(1,2)^*$ - \tilde{D}_i -spaces and soft $(1,2)^*$ -b- \tilde{D}_i -spaces for i = 0,1,2 which are weaker than soft $(1,2)^*$ - \tilde{T}_i -spaces and soft $(1,2)^*$ -b- \tilde{T}_i -spaces for i = 0,1,2 respectively. The basic properties and characteristics each of soft $(1,2)^*$ -b- \tilde{T}_i -spaces, soft $(1,2)^*$ - \tilde{D}_i -spaces and soft $(1,2)^*$ -b- \tilde{D}_i -spaces for i = 0,1,2 also have been studied. [DOI: 10.22401/JNUS.20.3.20]

Keywords: soft (1,2)*-difference sets, soft (1,2)*-b-difference sets, soft (1,2)*- \tilde{D}_i -spaces, soft (1,2)*- \tilde{T}_i -spaces and soft (1,2)*-b- \tilde{T}_i -spaces, i = 0,1,2.

Introduction

Soft set theory was firstly introduced by Molodtsov D. [1] as a new mathematical tool for dealing with uncertainty while modeling problems in economics, medical sciences, computer science, engineering physics and social sciences. Senel G. and Cagman N. [5] defined the theory of soft bitopological spaces over an initial universe with a fixed set of parameters. Revathi N. and Bageerathi K. [4] introduce and study soft $(1,2)^*$ -b-open sets in soft bitopological spaces $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ as a generalization of soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets. The purpose of this paper is to introduce new kinds of soft spaces, namely, soft $(1,2)^*$ - \tilde{D}_i -spaces and soft $(1,2)^*$ -b- \tilde{D}_i -spaces for i = 0,1,2 by using the concepts of soft $(1,2)^*$ -difference sets and soft (1,2)*-b-difference sets. These soft spaces which are weaker than soft $(1,2)^*$ - \tilde{T}_i -spaces and soft $(1,2)^*$ -b- \tilde{T}_i -spaces for i = 0,1,2 respectively. The characteristics and basic properties each of soft $(1,2)^*$ -b- \tilde{T}_i spaces, soft $(1,2)^* - \tilde{D}_i$ -spaces and soft $(1,2)^*$ b- \tilde{D}_i -spaces for i = 0.1,2 also have been studied.

1. Preliminaries

In this paper, X refers to an initial universe, P(X) is the power set of X, E is the set of

parameters. Now, we recall the following definitions and propositions.

Definition (1.1)[1]:

A soft set over X is a pair (A, U), where A is a function given by $A: U \rightarrow P(X)$ and U is a non-empty subset of E.

Definition (1.2)[3]:

If (A, U) is a soft set over X. Then $\tilde{a} = (e, \{a\})$ is called a soft point of (A, U), if $e \in U$ and $a \in A(e)$, and is denoted by $\tilde{a} \in (A, U)$.

Definition (1.3)[6]:

If $\tilde{\tau}$ is a family of soft sets over X. Then $\tilde{\tau}$ is called a soft topology on X if $\tilde{\tau}$ satisfies the following:

- i) $\widetilde{X}, \widetilde{\phi}$ belong to $\widetilde{\tau}$.
- ii) If $(A_1, E), (A_2, E) \in \tilde{\tau}$, then

 $(A_1, E) \widetilde{\cap} (A_2, E) \widetilde{\in} \widetilde{\tau}$.

(iii) If
$$(A_{\alpha}, E) \in \tilde{\tau}$$
, $\forall \alpha \in \Lambda$, then

$$\bigcup_{\alpha\in\Lambda}(A_{\alpha},E)\widetilde{\in\tau}$$

The triple $(X, \tilde{\tau}, E)$ is called a soft topological space over X. The members of $\tilde{\tau}$ are called soft open soft subsets of \tilde{X} .

Definition (1.4)[5]:

Let $X \neq \phi$, and let $\tilde{\tau}_1$ and $\tilde{\tau}_2$ be soft topologies over X. Then $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is called a soft bitopological space over X.

Definition (1.5)[5]

A soft subset (U,E) of a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is called soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open if $(U,E) = (V_1,E) \widetilde{\bigcup} (V_2,E)$ where $(V_1,E) \in \tilde{\tau}_1$ and $(V_2,E) \in \tilde{\tau}_2$. The complement of a soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set is defined to be soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed.

The family of all soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets need not form a soft topology as shown by the following example:

Example (1.6) :

Let $X = \{a, b, c\}$ and $E = \{e_1, e_2\}$, and let $\tilde{\tau}_1 = \{\widetilde{X}, \widetilde{\phi}, (A_1, E)\}$ and

$$\begin{split} \widetilde{\tau}_2 = \{\widetilde{X}, \widetilde{\phi}, (A_2, E)\} & \text{be two soft topologies} \\ \text{over } X, & \text{where } (A_1, E) = \{(e_1, \{X\}), (e_2, \{a, b\})\} & \text{and } (A_2, E) = \{(e_1, \{X\}), (e_2, \{a, c\})\}. \end{split}$$

The soft sets in $\{\widetilde{X}, \widetilde{\phi}, (A_1, E), (A_2, E)\}$ are soft $\widetilde{\tau}_1 \widetilde{\tau}_2$ -open set in \widetilde{X} . Since $(A_1, E) \widetilde{\cap}$

 $(A_2, E) = \{(e_1, \{X\}), (e_2, \{a\})\} = (A, E), \text{ but}$ (A, E) is not soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set in \tilde{X} . Thus (X, $\tilde{\tau}_1, \tilde{\tau}_2, E$) is not soft topology over X.

Definition (1.7)[5]:

If $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft bitopological space and $(A, E) \cong \widetilde{X}$. Then:

- i) $\tilde{\tau}_1 \tilde{\tau}_2 cl(A, E) = \widetilde{\cap} \{ (F, E) : (F, E) \text{ is soft } \tilde{\tau}_1 \tilde{\tau}_2 \$ -closed set in \widetilde{X} and $(A, E) \cong (F, E) \}$ is called the soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closure of (A, E).
- ii) $\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A, E) = \widetilde{\bigcup}\{(U, E) : (U, E) \text{ is soft} \\ \tilde{\tau}_1 \tilde{\tau}_2 \text{ -open set in } \widetilde{X} \text{ and } (U, E) \cong (A, E)\}$ is called the soft $\tilde{\tau}_1 \tilde{\tau}_2$ -interior of (A, E)

Proposition (1.8)[2] :

If $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft bitopological space and $(A_1, E), (A_2, E) \subseteq \tilde{X}$. Then: **i**) $\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A_1, E) \subseteq (A_1, E)$ and

 $(\mathbf{A}_1, \mathbf{E}) \cong \tilde{\tau}_1 \tilde{\tau}_2 \mathrm{cl}(\mathbf{A}_1, \mathbf{E}).$

- ii) The union of soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets in \tilde{X} is soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open.
- iii) The intersection of soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed sets in \tilde{X} is soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed.
- iv) $\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A_1, E)$ is soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set in \widetilde{X} and $\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{cl}(A_1, E)$ is soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed set in \widetilde{X} .
- v) (A_1, E) is soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set in \tilde{X} iff $(A_1, E) = \tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A_1, E)$.
- vi) (A_1, E) is soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed set in \tilde{X} iff $(A_1, E) = \tilde{\tau}_1 \tilde{\tau}_2 cl(A_1, E)$.
- vii) $\tilde{\tau}_1 \tilde{\tau}_2 cl(\tilde{\tau}_1 \tilde{\tau}_2 cl(A_1, E)) = \tilde{\tau}_1 \tilde{\tau}_2 cl(A_1, E)$ and $\tilde{\tau}_1 \tilde{\tau}_2 int(\tilde{\tau}_1 \tilde{\tau}_2 int(A_1, E)) = \tilde{\tau}_1 \tilde{\tau}_2 int(A_1, E)$.
- viii) $(\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A, E))^c = \tilde{\tau}_1 \tilde{\tau}_2 \operatorname{cl}((A, E)^c)$ and $\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}((A, E)^c) = (\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{cl}(A, E))^c$.
- ix) If $(A_1, E) \cong (A_2, E)$, then $\tilde{\tau}_1 \tilde{\tau}_2 cl(A_1, E) \cong \tilde{\tau}_1 \tilde{\tau}_2 cl(A_2, E)$.
- **x**) If $(A_1, E) \cong (A_2, E)$, then $\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A_1, E) \cong \tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A_2, E)$.

Definition (1.9)[4] :

A soft subset (A,E) of a soft bitopological space (X, $\tilde{\tau}_1, \tilde{\tau}_2, E$) is called soft (1,2)*-b-open if (A,E) \subseteq

 $\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{cl}(A, E)) \widetilde{\bigcup} \tilde{\tau}_1 \tilde{\tau}_2 \operatorname{cl}(\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A, E)).$

The complement of a soft $(1,2)^*$ -b-open set is defined to be soft $(1,2)^*$ -b-closed. The family of all soft $(1,2)^*$ -b-open (resp. soft $(1,2)^*$ -b-closed) subsets of $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is denoted by $(1,2)^*$ -b-O(\tilde{X}) (resp. $(1,2)^*$ -b-C(\tilde{X})).

Every soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set is soft $(1,2)^*$ -bopen, but the converse is not true in general. We see that by the following example:

Example (1.10):

Let $X = \{a, b, c\}$ and $E = \{e_1, e_2\}$, and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\phi}, (A_1, E)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}, (A_2, E)\}$ be two soft topologies over X, where $(A_1, E) = \{(e_1, \{X\}), (e_2, \{a\})\}$ and $(A_2, E) =$ $\{(e_1, \{X\}), (e_2, \{a, b\})\}$. The soft sets in $\{\tilde{X}, \tilde{\phi}, (A_1, E), (A_2, E)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ - open. Thus $(A, E) = \{(e_1, \{X\}), (e_2, \{a, c\})\}$ is a soft $(1,2)^*$ -b-open set in $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$, but is not soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open.

Definition(1.11)[4] :

Let (A, E) be a soft subset of a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$. Then:

- i) The soft (1,2)*-b-closure of (A, E), denoted by (1,2)*-bcl(A,E) is the intersection of all soft (1,2)*-b-closed sets in (X, τ₁, τ₂, E) which contains (A,E).
- ii) The soft (1,2)*-b-interior of (A,E), denoted by (1,2)*-bint(A,E) is the union of all soft (1,2)*-b-open sets in (X, τ̃₁, τ̃₂,E) which are contained in (A,E).

Proposition (1.12) :

If $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft bitopological space and $(A_1, E), (A_2, E) \subseteq \tilde{X}$. Then:

- i) $\tilde{\tau}_1 \tilde{\tau}_2 \operatorname{int}(A_1, E) \cong (1, 2)^* \operatorname{bint}(A_1, E) \cong (A_1, E)$.
- $$\begin{split} \textbf{ii)} \ (A_1,E) & \subseteq (1,2)^* \text{-} \operatorname{bcl}(A_1,E) \\ & \widetilde{\tau}_1 \widetilde{\tau}_2 \operatorname{cl}(A_1,E) \,. \end{split}$$
- iii) The union of soft $(1,2)^*$ -b-open sets in \tilde{X} is soft $(1,2)^*$ -b-open. [4].
- iv) The intersection of soft $(1,2)^*$ -b-closed sets in \tilde{X} is soft $(1,2)^*$ -b-closed. [4].
- v) $(1,2)^*-bint(A_1,E)$ is soft $(1,2)^*-b$ -open and $(1,2)^*-bcl(A_1,E)$ is soft $(1,2)^*-b$ closed.
- vi) (A_1, E) is soft $(1,2)^*$ -b-open in \tilde{X} iff $(1,2)^*$ -bint $(A_1, E) = (A_1, E)$. [4].

vii)
$$(A_1, E)$$
 is soft $(1,2)^*$ -b-closed in \tilde{X} iff
 $(1,2)^*$ -bcl $(A_1, E) = (A_1, E)$. [4].

viii) If
$$(A_1, E) \cong (A_2, E)$$
, then

$$(1,2)^*$$
-bint $(A_1,E) \cong (1,2)^*$ -bint (A_2,E) .

ix) If
$$(A_1, E) \cong (A_2, E)$$
, then

 $(1,2)^*-bcl(A_1,E) \cong (1,2)^*-bcl(A_2,E).$

x) $\widetilde{\mathbf{x}} \in (1,2)^*$ - bcl(A, E) iff for every soft (1,2)*-b-open set (V,E) containing $\widetilde{\mathbf{x}}$, (V,E) $\widetilde{\cap}$ (A,E) $\neq \widetilde{\mathbf{\phi}}$.

2. Weak Soft Separation Axioms

In this section we define and study new types of soft separation axioms and weak soft separation axioms in soft bitopological spaces, namley, soft $(1,2)^*$ - \tilde{T}_i -spaces and soft $(1,2)^*$ -

b- \tilde{T}_i -spaces for i = 0,1,2. The characteristics and the relations among these soft spaces also have been studied.

Definitions (2.1) :

A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is called a soft $(1,2)^*$ - \tilde{T}_0 -space (resp. soft $(1,2)^*$ b- \tilde{T}_0 -space) if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{X} , there exists a soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open set (resp. soft $(1,2)^*$ -b-open set) of \tilde{X} containing one of the soft points but not the other.

Remark (2.2) :

Every soft $(1,2)^*$ - \widetilde{T}_0 -space is soft $(1,2)^*$ -b- \widetilde{T}_0 -space, but the converse is not true in general. As we see by the following example:

Example (2.3) :

Let X = {a, b} and E = {e₁, e₂} and let $\tilde{\tau}_1 = {\tilde{X}, \tilde{\phi}, (A_1, E)}$ and $\tilde{\tau}_2 = {\tilde{X}, \tilde{\phi}, (A_2, E)}$ be soft topologies over X, where $(A_1, E) = {(e_1, {a}), (e_2, {a})}$ and $(A_2, E) =$ ${(e_1, {b}), (e_2, {b})}$. The soft sets in { $\tilde{X}, \tilde{\phi}, (A_1, E), (A_2, E)$ } are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1, 2)^*$ -b- \tilde{T}_0 -space, but is not soft $(1, 2)^*$ - \tilde{T}_0 -space, since $\tilde{x} = (e_1, {a})$ $\neq \tilde{y} = (e_2, {a})$, but there exists no soft $\tilde{\tau}_1 \tilde{\tau}_2$ open set containing \tilde{x} , but not containing \tilde{y} .

Now, we proceed to prove that every soft bitopological space is soft $(1,2)^*$ -b- \tilde{T}_0 -space.

Proposition (2.4) :

Let $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ be a soft bitopological space. If for some $\tilde{x} \in \tilde{X}, \{\tilde{x}\}$ is soft $(1,2)^*$ -bopen, then $\tilde{x} \notin (1,2)^*$ -bcl $(\{\tilde{y}\})$ for all $\tilde{y} \neq \tilde{x}$.

Proof:

If $\{\widetilde{x}\}\$ is soft $(1,2)^*$ -b-open for some $\widetilde{x} \in \widetilde{X}$, then $\{\widetilde{x}\}^c$ is soft $(1,2)^*$ -b-closed and $\widetilde{y} \in \{\widetilde{x}\}^c$ for all $\widetilde{y} \neq \widetilde{x}$. Hence $\{\widetilde{y}\} \subseteq \{\widetilde{x}\}^c$ and $(1,2)^*$ bcl($\{\widetilde{y}\}$) $\subseteq \{\widetilde{x}\}^c$ for all $\widetilde{y} \neq \widetilde{x}$. If $\widetilde{x} \in (1,2)^*$ bcl($\{\widetilde{y}\}$) for some $\widetilde{y} \neq \widetilde{x}$, then $\widetilde{x} \in \{\widetilde{x}\}^c$ which is not true. Therefore, $\widetilde{x} \notin (1,2)^*$ -bcl($\{\widetilde{y}\}$) for all $\widetilde{y} \neq \widetilde{x}$.

Theorem (2.5) :

In a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$, distinct soft points have distinct soft $(1,2)^*$ -b-closures.

Proof:

Let $\tilde{x}, \tilde{y} \in \tilde{X}$ such that $\tilde{x} \neq \tilde{y}$. Take $(A, E) = {\tilde{x}}^c$. Then $\tilde{\tau}_1 \tilde{\tau}_2 cl(A, E) = (A, E)$ or $\tilde{\tau}_1 \tilde{\tau}_2 cl(A, E) = \tilde{X}$.

Case (a)

If $\tilde{\tau}_1 \tilde{\tau}_2 cl(A, E) = (A, E)$, then (A, E) is soft $\tilde{\tau}_1 \tilde{\tau}_2$ -closed and hence soft $(1,2)^*$ -b-closed. Then $(A, E)^c = \{\tilde{x}\}$ is soft $(1,2)^*$ -b-open, not containing \tilde{y} . Therefore by proposition (2.4), $\tilde{x} \notin (1,2)^*$ -bcl($\{\tilde{y}\}$). But $\tilde{x} \in (1,2)^*$ -bcl($\{\tilde{x}\}$) which implies that $(1,2)^*$ -bcl($\{\tilde{x}\}$) and $(1,2)^*$ -bcl($\{\tilde{y}\}$) are distinct.

Case (b)

If $\tilde{\tau}_1 \tilde{\tau}_2 cl(A, E) = \tilde{X}$, then (A, E) is soft $(1,2)^*$ -b-open and hence $\{\tilde{x}\}$ is soft $(1,2)^*$ -b-closed which shows that $(1,2)^*$ -bcl $(\{\tilde{x}\}) = \{\tilde{x}\}$ which is not equal to $(1,2)^*$ -bcl $(\{\tilde{y}\})$.

Theorem (2.6) :

Every soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_0 -space.

Proof :

Let $\tilde{x}, \tilde{y} \in \tilde{X}$, $\tilde{x} \neq \tilde{y}$. Then by theorem $(2.5), (1,2)^*-bcl({\tilde{x}})$ is not equal to $(1,2)^*$ $bcl({\tilde{y}})$. Then there exists $\tilde{z} \in \tilde{X}$ such that $\widetilde{z} \in (1,2)^*$ -bcl({ \widetilde{x} }), but $\widetilde{z} \notin (1,2)^*$ -bcl({ \widetilde{y} }) $\widetilde{z} \in (1,2)^* - bcl({\widetilde{y}}),$ but $\widetilde{z} \notin (1,2)^*$ or $bcl({\widetilde{x}})$. Without loss of generality, let $\widetilde{z} \in$ $(1,2)^*-bcl({\widetilde{x}})$, but $\widetilde{z} \notin (1,2)^*-bcl({\widetilde{y}})$. If $\widetilde{\mathbf{x}} \in (1,2)^*$ -bcl({ $\widetilde{\mathbf{y}}$ }), then $(1,2)^*$ -bcl({ $\widetilde{\mathbf{x}}$ }) is contained in $(1,2)^*$ -bcl($\{\tilde{y}\}$) and therefore, $\tilde{z} \in (1,2)^*$ -bcl({ \tilde{y} }). which is a contradiction. Thus we get $\tilde{x} \notin (1,2)^* - bcl({\tilde{y}})$. This implies that $\widetilde{\mathbf{x}} \in ((1,2)^* - \operatorname{bcl}({\widetilde{\mathbf{y}}}))^c$. Therefore, $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_0 -space. Now, we introduce the definition of soft $(1,2)^*$ - \widetilde{T}_1 -spaces and soft $(1,2)^*$ -b- \widetilde{T}_1 -spaces

also we study the characteristics and the relations between these soft spaces and the previous soft spaces.

Definition (2.7) :

A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is called a soft $(1,2)^*$ - \tilde{T}_1 -space (resp. soft $(1,2)^*$ b- \tilde{T}_1 -space) if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{X} , there exists a soft $\tilde{\tau}_1\tilde{\tau}_2$ -open set (resp. soft $(1,2)^*$ -b-open set) of \tilde{X} containing \tilde{x} but not \tilde{y} and a soft $\tilde{\tau}_1\tilde{\tau}_2$ -open set (resp. soft $(1,2)^*$ -b -open set) of \tilde{X} containing \tilde{y} but not \tilde{x} .

Remark (2.8) :

Every soft $(1,2)^*$ -b- \tilde{T}_1 -space is a soft $(1,2)^*$ -b- \tilde{T}_0 -space, but the converse is not true in general. We see that by the following example:

Example (2.9) :

Let $X = \{a, b\}$ and $E = \{e_1, e_2\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\phi}, (A_1, E)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}, (A_2, E)\}$ be soft topologies over X, where $(A_1, E) = \{(e_1, \{a\}), (e_2, \{a\})\}$ and $(A_2, E) =$

 $\{(e_1, \{a\}), (e_2, \{\phi\})\}$. The soft sets in $\{\widetilde{X}, \widetilde{\phi}, \widetilde{\phi}\}$

 $(A_1, E), (A_2, E)$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_0 -space, but is not soft $(1,2)^*$ -b- \tilde{T}_1 -space.

Remark (2.10) :

Every soft $(1,2)^*$ - \widetilde{T}_1 -space is a soft $(1,2)^*$ b- \widetilde{T}_1 -space, but the converse is not true in general. We see that by the following example:

Example (2.11) :

Let $X = \{a, b\}$ and $E = \{e_1, e_2\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\phi}, (A_1, E)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}, (A_2, E)\}$ be soft topologies over X, where $(A_1, E) =$ $\{(e_1, \{a\}), (e_2, \{a\})\}$ and $(A_2, E) =$ $\{(e_1, \{b\}), (e_2, \{b\})\}$. The soft sets in $\{\tilde{X}, \tilde{\phi}, (A_1, E), (A_2, E)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1, 2)^*$ -b- \tilde{T}_1 -space, but is

(X, $\tilde{\tau}_1, \tilde{\tau}_2, E$) is a soft (1,2)*-b- \tilde{T}_1 -space, but is not soft (1,2)*- \tilde{T}_1 -space.

Remark (2.12) :

Every soft $(1,2)^*$ - \tilde{T}_1 -space is a soft $(1,2)^*$ - \tilde{T}_0 -space, but the converse is not true in general. We see that by the following example:

Example (2.13) :

Let $X = \{a, b, c\}$ and $E = \{e\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\phi}, (A_1, E)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}, (A_2, E)\}$ be soft topologies over X, where $(A_1, E) = \{(e, \{a\})\}$ and $(A_2, E) = \{(e, \{b\})\}.$

The soft sets in $\{\widetilde{X}, \widetilde{\phi}, (A_1, E), (A_2, E), (A_3, E)\}$ are soft $\widetilde{\tau}_1 \widetilde{\tau}_2$ -open sets, where $(A_3, E) = \{(e, \{a, b\})\}$. Thus $(X, \widetilde{\tau}_1, \widetilde{\tau}_2, E)$ is a soft $(1,2)^*$ - \widetilde{T}_0 -space, but is not soft $(1,2)^*$ - \widetilde{T}_1 -space.

Theorem (2.14) :

In a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ the following statements are equivalent:

- (i) $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_1 -space.
- (ii) For each $\tilde{x} \in \tilde{X}$, $\{\tilde{x}\}$ is a soft (1,2)*-bclosed set in \tilde{X} .
- (iii) Each soft subset of \tilde{X} is the intersection of all soft (1,2)*-b-open sets containing it.
- (iv) The intersection of all soft $(1,2)^*$ -b-open sets containing the soft point $\tilde{x} \in \tilde{X}$ is $\{\tilde{x}\}$.

Proof:

 $(i) \Rightarrow (ii)$. Let $\tilde{x} \in \tilde{X}$. To prove that $\{\widetilde{\mathbf{x}}\}$ is soft (1,2)*-b-closed in $\widetilde{\mathbf{X}}$. Let $\widetilde{\mathbf{y}} \notin \{\widetilde{\mathbf{x}}\}$ $\Rightarrow \tilde{x} \neq \tilde{y}$. Since \tilde{X} is a soft $(1,2)^*$ -b- \tilde{T}_1 -space, then there is a soft $(1,2)^*$ -b-open set (U,E)in \widetilde{X} such that $\widetilde{y} \in (U, E)$ and $\widetilde{x} \notin (U, E)$ $\Rightarrow \{\widetilde{\mathbf{x}}\} \widetilde{\cap} (\mathbf{U}, \mathbf{E}) = \widetilde{\mathbf{\phi}} \Rightarrow \{\widetilde{\mathbf{x}}\} \widetilde{\subset} (\mathbf{U}, \mathbf{E})^{c}$ \Rightarrow $(1,2)^* - bcl({\tilde{x}}) \cong (1,2)^* - bcl((U,E)^c) =$ $(U,E)^c$. Since $\widetilde{y} \notin (U,E)^c \implies \widetilde{y} \notin (1,2)^*$ $bcl({\widetilde{x}}) \implies (1,2)^* - bcl({\widetilde{x}}) = {\widetilde{x}}$. Therefore $\{\widetilde{\mathbf{x}}\}\$ is a soft $(1,2)^*$ -b-closed set in $\widetilde{\mathbf{X}}$. (ii) \Rightarrow (iii). Let $(A, E) \subset \widetilde{X}$ and $\widetilde{y} \notin (A, E)$. Then $(A, E) \subset \{\widetilde{y}\}^c$ and $\{\widetilde{y}\}^c$ is soft $(1, 2)^*$ -bopen in \widetilde{X} and $(A, E) = \widetilde{\bigcap} \{ \{ \widetilde{y} \}^c : \widetilde{y} \in (A, E)^c \}$ which is the intersection of all soft $(1,2)^*$ -bopen sets containing (A, E).

 $(iii) \Rightarrow (iv)$. Obvious.

(iv) \Rightarrow (i). Let $\tilde{x}, \tilde{y} \in \tilde{X}$, $\tilde{x} \neq \tilde{y}$. By our assumption, there exist at least a soft $(1,2)^*$ -b-open set containing \tilde{x} but not \tilde{y} and also a soft $(1,2)^*$ -b-open set containing \tilde{y} but not \tilde{x} . Therefore, \tilde{X} is a soft $(1,2)^*$ -b- \tilde{T}_1 -space.

Now, we introduce the definition of soft $(1,2)^*-\tilde{T}_2$ -spaces and soft $(1,2)^*-\tilde{T}_2$ -spaces also we study the characteristics and the relations between these soft spaces and the previous soft spaces.

Definition (2.15) :

A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is called a soft $(1,2)^* - \tilde{T}_2$ -space (resp. soft $(1,2)^* - \tilde{T}_2$ -space) if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{X} , there are two soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets (resp. soft $(1,2)^*$ -b-open sets) (U,E) and (V,E) of \tilde{X} such that $\tilde{x} \in (U,E), \tilde{y} \in (V,E)$ and $(U,E) \cap (V,E) = \tilde{\phi}$.

Remark (2.16) :

Every soft $(1,2)^*$ -b- \tilde{T}_2 -space is a soft $(1,2)^*$ -b- \tilde{T}_1 -space, but the converse is not true in general. We see that by the following example:

Example (2.17) :

Let $X = \{a, b, c\}$ and $E = \{e\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\phi}, (A_1, E)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}, (A_2, E)\}$ be soft topologies over X, where $(A_1, E) =$ $\{(e, \{a, b\})\}$ and $(A_2, E) = \{(e, \{b, c\})\}$. The soft sets in $\{\tilde{X}, \tilde{\phi}, (A_1, E), (A_2, E)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_1 -space, but is not soft $(1,2)^*$ -b- \tilde{T}_2 space.

Remark (2.18) :

Every soft $(1,2)^*$ - \tilde{T}_2 -space is a soft $(1,2)^*$ b- \tilde{T}_2 -space, but the converse is not true in general. In example (2.11), $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_2 -space, but is not soft $(1,2)^*$ - \tilde{T}_2 -space.

Remark (2.19) :

Every soft $(1,2)^*$ - \tilde{T}_2 -space is a soft $(1,2)^*$ - \tilde{T}_1 -space, but the converse is not true in general. We see that by the following example:

Example (2.20) :

Let X = N and $E = \{e_1, e_2\}$ and let $\tilde{\tau}_1 = \{(U, E) \cong \tilde{X} : (U, E)^c \text{ is finite}\} \bigcup \{\tilde{\phi}\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}\}$ be soft topologies over X. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1, 2)^* - \tilde{T}_1$ -space, but is not soft $(1, 2)^* - \tilde{T}_2$ -space.

Definition (2.21) :

A soft subset (A, E) of a soft bitopological space (X, $\tilde{\tau}_1, \tilde{\tau}_2, E$) is called a soft (1,2)*neighborhood (resp. soft (1,2)*-bneighborhood) of a soft point \tilde{x} in \tilde{X} if there exists a soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open (resp. soft (1,2)*-bopen) set (U, E) in \tilde{X} such that $\tilde{x} \in (U, E) \subseteq (A, E)$.

<u>Theorem (2.22) :</u>

For a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ the following statements are equivalent:

(i) $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_2 -space.

- (ii) If $\tilde{x} \in \tilde{X}$, then for each $\tilde{y} \neq \tilde{x}$, there is a soft $(1,2)^*$ -b-neighborhood (N,E) of \tilde{x} such that $\tilde{y} \notin (1,2)^*$ -bcl(N,E).
- (iii) For each $\tilde{x} \in \tilde{X}$, $\tilde{\cap} \{ (1,2)^* bcl(N,E) :$ (N,E) is a soft (1,2)*-b-neighborhood of $\tilde{x} \} = \{ \tilde{x} \}$

Proof:

(i) \Rightarrow (ii). Let $\tilde{x} \in \tilde{X}$. If $\tilde{y} \in \tilde{X}$ such that $\tilde{y} \neq \tilde{x}$, there exist disjoint soft $(1,2)^*$ -b-open sets (U,E), (V,E) such that $\tilde{x} \in (U,E)$ and $\tilde{y} \in (V,E)$. Then $\tilde{x} \in (U,E) \cong (V,E)^c$ which implies that $(V,E)^c$ is a soft $(1,2)^*$ -b-neighborhood of \tilde{x} . Also $(V,E)^c$ is soft $(1,2)^*$ -b-closed and $\tilde{y} \notin (V,E)^c$. Let $(N,E) = (V,E)^c$. Then $\tilde{y} \notin (1,2)^*$ -bcl(N,E).

(ii) ⇒(iii). Obvious.

(iii) \Rightarrow (i). Let $\tilde{x}, \tilde{y} \in \tilde{X}$, $\tilde{x} \neq \tilde{y}$. By hypothesis, there is at least a soft (1,2)*-b

-neighborhood (N, E) of \tilde{x} such that $\tilde{y} \notin (1,2)^*$ -bcl(N, E). We have $\tilde{x} \notin ((1,2)^*$ bcl(N, E))^c which is soft $(1,2)^*$ -b-open. Since (N, E) is a soft $(1,2)^*$ -b-neighborhood of \tilde{x} , then there exists a soft $(1,2)^*$ -b-open set (U, E) such that $\tilde{x} \in (U, E) \cong (N, E)$ and (U, E) $\bigcap ((1,2)^*$ -bcl(N, E))^c = $\tilde{\phi}$. Hence (X, $\tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_2 -space.

Definition (2.23):

A soft function $f: (X, \tilde{\tau}_1, \tilde{\tau}_2, E) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, E)$ is called soft (1,2)*-continuous (resp. soft (1,2)*-b-continuous) if $f^{-1}((U,E))$ is soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open (resp. soft (1,2)*-b-open) set in \tilde{X} for each soft $\tilde{\sigma}_1 \tilde{\sigma}_2$ -open set (U,E) in \tilde{Y} .

Definition (2.24):

A soft function $f : (X, \tilde{\tau}_1, \tilde{\tau}_2, E) \to (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, E)$ is called soft $(1,2)^*$ -b-irresolute if $f^{-1}((U, E))$ is soft $(1,2)^*$ -b-open set in \tilde{X} for each soft $(1,2)^*$ -b-open set (U, E) in \tilde{Y} .

Theorem (2.25) :

Let $f: (X, \tilde{\tau}_1, \tilde{\tau}_2, E) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, E)$ be a soft $(1,2)^*$ -b-continuous injective function. If \tilde{Y} is a soft $(1,2)^*$ - \tilde{T}_i -space, then \tilde{X} is a soft $(1,2)^*$ -b- \tilde{T}_i -space, i = 0,1,2.

Proof:

Suppose that \tilde{Y} is a soft $(1,2)^*-\tilde{T}_2$ -space. Let $\tilde{x}, \tilde{y} \in \tilde{X}$ such that $\tilde{x} \neq \tilde{y}$. Since f is injective and \tilde{Y} is a soft $(1,2)^*$ - \tilde{T}_2 -space, then there exists disjoint soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets (A_1, E) and (A_2, E) of \tilde{Y} such that $f(\tilde{x}) \in (A_1, E)$ and $f(\tilde{y}) \in (A_2, E)$. By $f^{-1}((A_1, E))$ definition (2.23),and $f^{-1}((A_2, E))$ are soft (1,2)*-b-open sets in \tilde{X} Such that $\tilde{\mathbf{x}} \in f^{-1}((\mathbf{A}_1, \mathbf{E})), \tilde{\mathbf{y}} \in f^{-1}((\mathbf{A}_2, \mathbf{E}))$ and $f^{-1}((A_1, E)) \cap f^{-1}((A_2, E)) = \phi$. Hence \tilde{X} is a soft $(1,2)^*$ - b- \tilde{T}_2 -space. Similarly, we can prove \tilde{X} is a soft $(1,2)^*$ -b- \tilde{T}_i -space when i = 0, 1.

Theorem (2.26) :

Let $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, E) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, E)$ be a soft $(1,2)^*$ -continuous injective function. If \tilde{Y} is a soft $(1,2)^*$ - \tilde{T}_i -space, then so is \tilde{X} , i = 0,1,2.

Theorem (2.27):

Let $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, E) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, E)$ be a soft $(1,2)^*$ -b-irresolute injective function. If \tilde{Y} is a soft $(1,2)^*$ -b- \tilde{T}_i -space, then so is \tilde{X} , i=0,1,2.

Proof:

Suppose that \tilde{Y} is a soft $(1,2)^*$ -b- \tilde{T}_2 -space. Let $\tilde{x}, \tilde{y} \in \tilde{X}$ such that $\tilde{x} \neq \tilde{y}$. Since f is injective and \tilde{Y} is a soft $(1,2)^*$ -b- \tilde{T}_2 -space, then there exists disjoint soft $(1,2)^*$ -b-open sets (A_1, E) and (A_2, E) of \tilde{Y} such that $f(\tilde{x}) \in (A_1, E)$ and $f(\tilde{y}) \in (A_2, E).$ By $f^{-1}((A_1, E))$ definition (2.24),and $f^{-1}((A_2, E))$ are soft (1,2)*-b-open sets in \tilde{X} such that $\tilde{x} \in f^{-1}((A_1, E)), \quad \tilde{y} \in f^{-1}((A_2, E))$ and $f^{-1}((A_1, E)) \cap f^{-1}((A_2, E)) = \phi$. Hence \tilde{X} is a soft $(1,2)^*$ -b- \tilde{T}_2 -space.

3. Weak Soft (1,2)*- \widetilde{D} -Separation Axioms

Now, we introduce and study new concepts, namely, soft $(1,2)^*$ - \tilde{D} -sets and soft $(1,2)^*$ - \tilde{D}_b -sets by using the notion of soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets and soft $(1,2)^*$ -b-open sets respectively. Furthermore we use these soft sets to define and study new types of soft separation axioms, namely, soft $(1,2)^*$ - \tilde{D}_i -spaces and soft $(1,2)^*$ b- \tilde{D}_i -spaces for i = 0,1,2. Moreover we investigate the relation between the soft $(1,2)^*$ - \tilde{T}_i -spaces and each of soft $(1,2)^*$ -b- \tilde{T}_i spaces, soft $(1,2)^*$ - \tilde{D}_i -spaces and soft $(1,2)^*$ b- \tilde{D}_i -spaces for i = 0,1,2. The characteristics of these soft spaces also have been studied.

Definition (3.1) :

A soft subset (A, E) of a soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is called:

i) A soft $(1,2)^*$ -difference set (briefly soft $(1,2)^*$ - \tilde{D} -set) if there are two soft $\tilde{\tau}_1\tilde{\tau}_2$ -

open sets (U,E) and (V,E) in \tilde{X} such that $(U,E) \neq \tilde{X}$ and $(A,E) = (U,E) \setminus (V,E)$.

ii) A soft (1,2)*-b-difference set (briefly soft (1,2)*-D
_b-set) if there are two soft (1,2)*-b-open sets (U,E) and (V,E) in X such that (U,E) ≠ X and (A,E) = (U,E) \ (V,E)

Remarks (3.2) :

- i) In definition (3.1), if $(U,E) \neq \tilde{X}$ and $(V,E) = \tilde{\phi}$, then every proper soft $\tilde{\tau}_1 \tilde{\tau}_2$ open (resp. soft (1,2)*-b-open) soft subset of \tilde{X} is a soft (1,2)*- \tilde{D} -set (resp. soft $(1,2)^*-\tilde{D}_b$ -set).
- ii) In any soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ any soft $(1,2)^* - \tilde{D}$ -set is soft $(1,2)^* - \tilde{D}_b$ -set, but the converse is not true in general. In example (1.10), $(A,E) = \{(e_1, \{X\}), (e_2, \{a,c\})\}$ is a soft $(1,2)^* - \tilde{D}_b$ -set, but is not soft $(1,2)^* - \tilde{D}$ -set.

Now, we define new types of soft separation axioms in soft bitopological spaces, namely, soft $(1,2)^* - \tilde{D}_i$ -spaces and soft $(1,2)^* - \tilde{D}_i$ -spaces for i = 0,1,2.

Definitions (3.3) :

A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is called:

- (i) A soft (1,2)*-D₀-space (resp. soft (1,2)*-b D₀-space) if for any two distinct soft points X and Y of X, there exists a soft (1,2)*-D set (resp. soft (1,2)*-D_b-set) of X containing one of the soft points but not the other.
- (ii) A soft (1,2)*-D₁-space (resp. soft (1,2)*b-D₁-space) if for any two distinct soft points x and y of X, there exists a soft (1,2)*-D -set (resp. soft (1,2)*-D_b-set) of X containing x but not y and a soft (1,2)*-D -set (resp. soft (1,2)*-D_b-set) of X containing y but not x.

(iii) A soft $(1,2)^* - \tilde{D}_2$ -space (resp. soft $(1,2)^*$ b- \tilde{D}_2 -space) if for any two distinct soft points \tilde{x} and \tilde{y} of \tilde{X} , there are two soft $(1,2)^* - \tilde{D}$ -sets (resp. soft $(1,2)^* - \tilde{D}_b$ -sets), (U,E) and (V,E) of \tilde{X} such that $\tilde{x} \in (U,E), \tilde{y} \in (V,E)$ and $(U,E) \cap (V,E) = \tilde{\phi}$.

Theorem (3.4):

- (i) Every soft $(1,2)^* \tilde{T}_i$ -space (resp. soft (1,2)*-b- \tilde{T}_i -space) is soft (1,2)*- \tilde{D}_i -space (resp. soft (1,2)*-b- \tilde{D}_i -space), i = 0,1,2.
- (ii) Every soft $(1,2)^* \cdot \tilde{D}_i$ -space (resp. soft $(1,2)^* \cdot b \cdot \tilde{D}_i$ -space) is soft $(1,2)^* \cdot \tilde{D}_{i-1}$ -space (resp. soft $(1,2)^* \cdot b \cdot \tilde{D}_{i-1}$ -space), i = 1,2.
- iii) Every soft $(1,2)^*$ - \tilde{D}_i -space is soft $(1,2)^*$ -b- \tilde{D}_i -space, i = 0,1,2.

Proof:

- (i) Follows from Remark (3.2).
- (ii) It is obvious.
- (iii) It is obvious.

Remark (3.5):

The converse of theorem (3.4), no. (i) may not be true in general. We see that by the following example:

Example (3.6) :

Let $X = \{a, b, c\}$ and $E = \{e\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\phi}, (A_1, E), (A_2, E)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}, (A_3, E)\}$ be soft topologies over X, where $(A_1, E) = \{(e, \{a\})\}, (A_2, E) =$ $\{(e, \{a, b\})\}$ and $(A_3, E) = \{(e, \{a, c\})\}.$ The soft sets in $\{\tilde{X}, \tilde{\phi}, (A_1, E), (A_2, E), (A_3, E)\}$

$$\begin{split} & (A_3,E) \} \quad \text{are soft} \quad \widetilde{\tau}_1 \widetilde{\tau}_2 \text{-open sets. Thus} \\ & (X,\widetilde{\tau}_1,\widetilde{\tau}_2,E) \text{ is a soft } (1,2)^*\text{-}\widetilde{D}_i\text{-space (resp. soft } (1,2)^*\text{-}\widetilde{D}_i\text{-space}), \text{ but is not soft } (1,2)^*\text{-}\widetilde{T}_i\text{-space (resp. soft } (1,2)^*\text{-}\widetilde{T}_i\text{-space}), \\ & i=1,2 \,. \end{split}$$

Remark (3.7) :

The converse of theorem (3.4), no. (ii) may not be true in general. We see that by the following example:

Example (3.8) :

Let $X = \{a, b\}$ and $E = \{e\}$ and let $\tilde{\tau}_1 = \{\tilde{X}, \tilde{\phi}, (A, E)\}$ and $\tilde{\tau}_2 = \{\tilde{X}, \tilde{\phi}\}$ be soft topologies over X, where (A, E) = $\{(e, \{a\})\}$. The soft sets in $\{\tilde{X}, \tilde{\phi}, (A, E)\}$ are soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets. Thus $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^* - \tilde{D}_0$ -space (resp. soft $(1,2)^* - \tilde{D}_0$ space), but is not soft $(1,2)^* - \tilde{D}_1$ -space (resp. soft $(1,2)^* - \tilde{D}_1$ -space).

Remark (3.9) :

The converse of theorem (3.4), no. (iii) may not be true in general. In example (2.11), $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft (1,2)*-b- \tilde{D}_i -space, but is not soft (1,2)*- \tilde{D}_i -space, i = 0,1,2.

Theorem (3.10) :

A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{D}_0 -space (resp. soft $(1,2)^*$ - \tilde{D}_0 -space) if and only if it is a soft $(1,2)^*$ -b- \tilde{T}_0 space (resp. soft $(1,2)^*$ - \tilde{T}_0 - space).

Proof:

Sufficiency, follows from theorem (3.4), no. (i). Necessity, let $\tilde{x}, \tilde{y} \in \tilde{X}$ such that $\tilde{x} \neq \tilde{y}$ Since $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{D}_0 space, then there exists a soft $(1,2)^*$ - \tilde{D}_b - set (U,E) such that $\tilde{x} \in (U,E)$, $\tilde{y} \notin (U,E)$. Let $(U,E) = (U_1,E) \setminus (U_2,E)$, where $(U_1,E) \neq \tilde{X}$ and $(U_1,E), (U_2,E)$ are soft $(1,2)^*$ -b-open sets in \tilde{X} . By $\tilde{y} \notin (U,E)$ we have two cases: (i) $\tilde{y} \notin (U_1,E)$

(ii) $\tilde{y} \in (U_1, E)$ and $\tilde{y} \in (U_2, E)$.

In case (i) $\widetilde{y} \notin (U_1, E)$ and $\widetilde{x} \in (U, E) = (U_1, E) \setminus (U_2, E) \implies \widetilde{x} \in (U_1, E)$ and $\widetilde{y} \notin (U_1, E)$.

In case (ii) $\tilde{y} \in (U_1, E)$ and $\tilde{y} \in (U_2, E)$, but $\tilde{x} \in (U_1, E) \setminus (U_2, E) \Rightarrow \tilde{x} \notin (U_2, E) \Rightarrow$ $\tilde{y} \in (U_2, E)$ and $\tilde{x} \notin (U_2, E)$. Thus in both cases, we obtain that $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{T}_0 -space. Similarly, we can prove that \tilde{X} is a soft $(1,2)^*$ - \tilde{D}_0 -space if and only if it is a soft $(1,2)^*$ - \tilde{T}_0 -space.

Theorem (3.11) :

A soft bitopological space $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{D}_1 -space (resp. soft $(1,2)^*$ - \tilde{D}_1 space) if and only if it is a soft $(1,2)^*$ -b- \tilde{D}_2 space (resp. soft $(1,2)^*$ - \tilde{D}_2 -space).

Proof:

Sufficiency. Follows from theorem (3.4), no. (ii). Necessity. Let $\tilde{x}, \tilde{y} \in \tilde{X}$ such that $\tilde{x} \neq \tilde{y}$. Since $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft

 $(1,2)^*$ -b- \widetilde{D}_1 -space, then there exists soft $(1,2)^*$ - \widetilde{D}_b -sets (U,E) and (V,E) in \widetilde{X} such that $\widetilde{x} \in (U,E)$, $\widetilde{y} \notin (U,E)$ and $\widetilde{y} \in (V,E)$, $\widetilde{x} \notin (V,E)$. Let $(U,E) = (U_1,E) \setminus (U_2,E)$ and $(V,E) = (U_3,E) \setminus (U_4,E)$, where

 $(U_1, E), (U_2, E), (U_3, E), (U_4, E)$ are soft (1,2)*-b-open sets in \widetilde{X} and $(U_1, E) \neq \widetilde{X}$, $(U_3, E) \neq \widetilde{X}$. By $\widetilde{x} \notin (V, E)$ we have two cases: (i) $\widetilde{x} \notin (U_3, E)$. (ii) $\widetilde{x} \in (U_3, E)$ and $\widetilde{x} \in (U_4, E)$.

In case (i): $\tilde{x} \notin (U_3, E)$. By $\tilde{y} \notin (U, E)$ we have two subcases:

(a) $\tilde{y} \in (U_1, E)$ and $\tilde{y} \in (U_2, E)$.

(b) $\widetilde{\mathbf{y}} \notin (\mathbf{U}_1, \mathbf{E})$.

Subcase (a): $\tilde{y} \in (U_1, E)$ and $\tilde{y} \in (U_2, E)$. We have $\tilde{x} \in (U_1, E) \setminus (U_2, E)$, $\tilde{y} \in (U_2, E)$ and $((U_1, E) \setminus (U_2, E)) \cap (U_2, E) = \tilde{\phi}$. Observe that $(U_2, E) \neq \tilde{X}$ since $(U, E) \neq \tilde{\phi}$, thus by Remarks (3.2),(i), (U_2, E) is a soft $(1,2)^* - \tilde{D}_b$ -set.

Subcase (b)

 $\widetilde{y} \notin (U_1, E)$. Since $\widetilde{x} \in (U_1, E) \setminus (U_2, E)$ and $\widetilde{x} \notin (U_3, E)$, then $\widetilde{x} \in (U_1, E) \setminus ((U_2, E) \widetilde{\bigcup}$ $(U_3, E))$. Since $\widetilde{y} \in (U_3, E) \setminus (U_4, E)$ and $\widetilde{y} \notin (U_1, E)$, then

 $\widetilde{\mathbf{y}} \in (\mathbf{U}_3, \mathbf{E}) \setminus ((\mathbf{U}_4, \mathbf{E}) \widetilde{\bigcup} (\mathbf{U}_1, \mathbf{E})).$ Observe also from Proposition (1.12), (iii), that $(U_2, E)\widetilde{\bigcup}(U_3, E)$ and $(U_4, E)\widetilde{\bigcup}(U_1, E)$ are (1,2)*-b-open soft sets. Hence $\widetilde{\mathbf{x}} \in (\mathbf{U}_1, \mathbf{E}) \setminus ((\mathbf{U}_2, \mathbf{E}) \widetilde{\bigcup} (\mathbf{U}_3, \mathbf{E})),$ $\tilde{\mathbf{y}} \in (\mathbf{U}_3, \mathbf{E}) \setminus ((\mathbf{U}_4, \mathbf{E}) \widetilde{\bigcup} (\mathbf{U}_1, \mathbf{E}))$ and $((\mathbf{U}_1,\mathbf{E})\setminus((\mathbf{U}_2,\mathbf{E})\,\widetilde{\bigcup}\,(\mathbf{U}_3,\mathbf{E})))\,\widetilde{\cap}$ $((\mathbf{U}_3,\mathbf{E})\setminus((\mathbf{U}_4,\mathbf{E})\widetilde{\bigcup}(\mathbf{U}_1,\mathbf{E})))=\widetilde{\boldsymbol{\phi}}.$ In case (ii): $\tilde{x} \in (U_3, E)$ and $\tilde{x} \in (U_4, E)$. We have $\tilde{y} \in (U_3, E) \setminus (U_4, E)$, $\tilde{x} \in (U_4, E)$ and $((U_3, E) \setminus (U_4, E)) \cap (U_4, E) = \phi$. Observe that $(U_4, E) \neq \widetilde{X}$ since $(V, E) \neq \widetilde{\phi}$, thus by Remarks (3.2),(i), (U₄, E) is a soft $(1,2)^* - \tilde{D}_{h}$ set. Hence $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{D}_2 space. Similarly, we can prove that \tilde{X} is a soft $(1,2)^*$ - \widetilde{D}_1 -space if and only if it is a soft $(1,2)^{*}-\tilde{D}_{2}$ -space.

From theorem (3.4), no. (ii), and theorem (3.10), we get the following result.

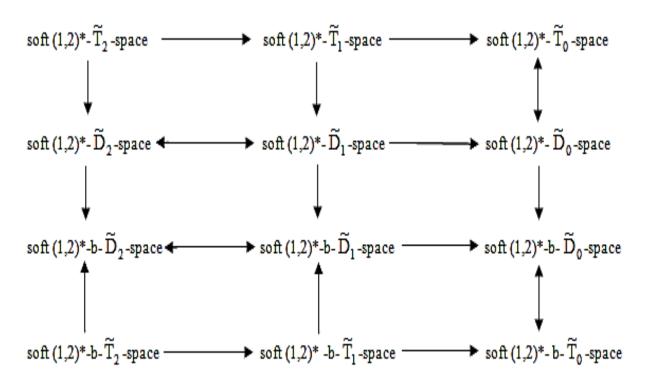
Corollary (3.12) :

If $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{D}_1 -space (resp. soft $(1,2)^*$ - \tilde{D}_1 -space), then it is a soft $(1,2)^*$ -b- \tilde{T}_0 -space (resp. soft $(1,2)^*$ - \tilde{T}_0 -space).

Remark (3.13) :

The converse of corollary (3.12), may not be true in general. In example (3.8), $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft (1,2)*-b- \tilde{T}_0 -space (resp. soft (1,2)*- \tilde{T}_0 -space), but is not a soft (1,2)*b- \tilde{D}_1 -space (resp. soft (1,2)*- \tilde{D}_1 -space).

The following diagram show the relations among the soft $(1,2)^* \cdot \widetilde{D}_i$ -spaces, soft $(1,2)^*$ -b- \widetilde{D}_i -spaces, soft $(1,2)^* \cdot \widetilde{T}_i$ -spaces and soft $(1,2)^*$ -b- \widetilde{T}_i -spaces, i = 0,1,2.



 $\frac{\textit{Definition (3.14):}}{\text{Let }(X, \tilde{\tau}_1, \tilde{\tau}_2, E) \text{ be a soft bitopological}}$ space. A soft point $\tilde{x} \in \tilde{X}$ which has \tilde{X} as the only soft (1,2)*-neighborhood (resp. soft $(1,2)^*$ -b-neighborhood) is called a soft $(1,2)^*$ neat (resp. soft (1,2)*-b-neat) point.

<u>Theorem (3.15)</u>

For a soft $(1,2)^*$ -b- \widetilde{T}_0 -space (resp. soft $(1,2)^*-\widetilde{T}_0$ -space) $(X, \widetilde{\tau}_1, \widetilde{\tau}_2, E)$ the following are equivalent:

- (i) $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \tilde{D}_1 -space (resp. soft $(1,2)^*$ - \tilde{D}_1 -space).
- (ii) $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ has no soft $(1,2)^*$ -b-neat (resp. soft $(1,2)^*$ -neat) point.

Proof:

(i) \Rightarrow (ii). Since $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ b- \widetilde{D}_1 -space, then each soft point $\widetilde{x} \in \widetilde{X}$ is a soft $(1,2)^* - \widetilde{D}_h$ -set contained in $(U,E) = (U_1,E) \setminus (U_2,E)$, where (U_1,E) and (U_2, E) are soft $(1,2)^*$ -b-open sets and thus in (U_1, E) . By definition $(U_1, E) \neq \tilde{X}$. This implies that \tilde{x} is not a soft $(1,2)^*$ -b-neat point.

(ii) \Rightarrow (i). If (X, $\tilde{\tau}_1, \tilde{\tau}_2, E$) is a soft (1,2)*-b- \widetilde{T}_0 -space, then for each distinct soft points $\widetilde{x}, y \in \widetilde{X}$, at least one of them, say \widetilde{x} has a soft (1,2)*-b-neighborhood (U,E) containing \tilde{x} , but not \tilde{y} . Thus (U,E) is different from \tilde{X} and therefore by Remark (3.2),(i), (U,E) is a soft $(1,2)^*$ - \tilde{D}_h -set. Since \tilde{X} has no soft $(1,2)^*$ -b-neat point, then \tilde{y} is not a soft $(1,2)^*$ b-neat point. Thus there exists a soft $(1,2)^*$ -b-neighborhood (V,E) of \tilde{y} such that $(V,E) \neq \widetilde{X}$. Therefore, $\widetilde{y} \in (V,E) \setminus (U,E)$, $\widetilde{x} \notin (V, E) \setminus (U, E)$ and $(V, E) \setminus (U, E)$ is a soft $(1,2)^*$ - \tilde{D}_h -set. Hence $(X, \tilde{\tau}_1, \tilde{\tau}_2, E)$ is a soft $(1,2)^*$ -b- \widetilde{D}_1 -space.

Theorem (3.16) :

If $f:(X,\tilde{\tau}_1,\tilde{\tau}_2,E) \to (Y,\tilde{\sigma}_1,\tilde{\sigma}_2,E)$ is a soft (1,2)*-b-continuous (resp. soft $(1,2)^{*}$ continuous) surjective function and (A,E) is a soft $(1,2)^*$ - \tilde{D} -set in \tilde{Y} , then the inverse image of (A,E) is a soft $(1,2)^*$ - \tilde{D}_h -set (resp. soft $(1,2)^*$ - \tilde{D} -set) in \tilde{X} .

Proof:

Let (A, E) be a soft $(1,2)^*$ - \tilde{D} -set in \tilde{Y} , then there are two soft $\tilde{\tau}_1 \tilde{\tau}_2$ -open sets (U,E) and (V,E) in \tilde{Y} such that $(U,E) \neq \tilde{Y}$ and $(A, E) = (U, E) \setminus (V, E)$. Since f is soft $(1,2)^*$ b-continuous, then $f^{-1}((U,E))$ and $f^{-1}((V,E))$ are soft $(1,2)^*$ -b-open sets in \widetilde{X} . Since $(U, E) \neq \tilde{Y}$ and f is surjective, then $f^{-1}((U,E)) \neq \widetilde{X}$. Hence $f^{-1}((A,E)) =$ $f^{-1}((U,E)) \setminus f^{-1}((V,E))$ is a soft $(1,2)^* - \tilde{D}_{h}$ set in \widetilde{X} . By the same way we can prove that

Theorem (3.17) :

other case.

If $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, E) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, E)$ is a soft $(1,2)^*$ -b-irresolute surjective function and (A,E) is a soft $(1,2)^* - \widetilde{D}_{b}$ -set in \widetilde{Y} , then the inverse image of (A,E) is a soft $(1,2)^*$ - \tilde{D}_{h} -set in \widetilde{X} .

Proof:

Let (A,E) be a soft (1,2)*- \tilde{D}_b -set in \tilde{Y} , then there are two soft $(1,2)^*$ -b-open sets (U,E) and (V,E) in \tilde{Y} such that $(U,E) \neq \tilde{Y}$ and $(A, E) = (U, E) \setminus (V, E)$. Since f is soft $(1,2)^*$ -b-irresolute, then $f^{-1}((U,E))$ and $f^{-1}((V,E))$ are soft $(1,2)^*$ -b-open sets in \tilde{X} . Since $(U, E) \neq \tilde{Y}$ and f is surjective, then $f^{-1}((U,E)) \neq \widetilde{X}.$ Hence $f^{-1}((A, E)) =$ $f^{-1}((U,E)) \setminus f^{-1}((V,E))$ is a soft $(1,2)^* - \tilde{D}_{h}$ set in \tilde{X} .

Theorem (3.18) :

Let $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, E) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, E)$ be a soft (1,2)*-b-continuous bijective function. If \widetilde{Y} is a soft $(1,2)^*$ - \widetilde{D}_i -space, then \widetilde{X} is a soft $(1,2)^*$ -b- \tilde{D}_i -space, i = 0,1,2.

Proof:

Suppose that \tilde{Y} is a soft $(1,2)^* - \tilde{D}_2$ -space. Let $\tilde{x}, \tilde{y} \in \tilde{X}$ such that $\tilde{x} \neq \tilde{y}$. Since f is injective and \tilde{Y} is a soft $(1,2)^*-\tilde{D}_2$ -space, then there exists disjoint soft $(1,2)^*$ - \tilde{D} -sets

 (A_1, E) and (A_2, E) of \tilde{Y} such that $f(\tilde{x}) \in (A_1, E)$ and $f(\tilde{y}) \in (A_2, E)$. By theorem (3.16), $f^{-1}((A_1, E))$ and $f^{-1}((A_2, E))$ are soft $(1,2)^*$ - \tilde{D}_{b} -sets in \tilde{X} such that $\widetilde{\mathbf{x}} \in \mathbf{f}^{-1}((\mathbf{A}_1, \mathbf{E})), \qquad \widetilde{\mathbf{y}} \in \mathbf{f}^{-1}((\mathbf{A}_2, \mathbf{E}))$ and $f^{-1}((A_1, E)) \cap f^{-1}((A_2, E)) = \phi$. Hence \tilde{X} is a soft $(1,2)^*$ -b- \tilde{D}_2 -space. By the same way we can prove that other cases.

 $\frac{\text{Theorem (3.19):}}{\text{Let } f:(X,\tilde{\tau}_1,\tilde{\tau}_2,E) \rightarrow (Y,\tilde{\sigma}_1,\tilde{\sigma}_2,E) \text{ be a}}$ soft $(1,2)^*$ -continuous bijective function. If \tilde{Y} is a soft $(1,2)^* - \widetilde{D}_i$ -space, then so is \widetilde{X} , i = 0, 1, 2.

Proof:

Obvious.

Theorem (3.20):

Let $f:(X, \tilde{\tau}_1, \tilde{\tau}_2, E) \rightarrow (Y, \tilde{\sigma}_1, \tilde{\sigma}_2, E)$ be a soft (1,2)*-b-irresolute bijective function. If \tilde{Y} is a soft $(1,2)^*$ -b- \widetilde{D}_i -space, then so is \widetilde{X} , i = 0.1.2.

Proof:

Suppose that \tilde{Y} is a soft $(1,2)^*$ -b- \tilde{D}_2 -space. Let $\tilde{x}, \tilde{y} \in \tilde{X}$ such that $\tilde{x} \neq \tilde{y}$. Since f is injective and \tilde{Y} is a soft $(1,2)^*$ -b- \tilde{D}_2 -space, then there exists disjoint soft $(1,2)^*$ - \tilde{D}_h -sets (A_1,E) and (A_2,E) of \tilde{Y} such that $f(\tilde{x}) \in (A_1, E)$ and $f(\tilde{y}) \in (A_2, E)$. By theorem (3.17), $f^{-1}((A_1, E))$ and $f^{-1}((A_2, E))$ are soft $(1,2)^*$ - \tilde{D}_{h} -sets in \tilde{X} such that $\widetilde{\mathbf{x}} \in \mathbf{f}^{-1}((\mathbf{A}_1, \mathbf{E})), \qquad \widetilde{\mathbf{y}} \in \mathbf{f}^{-1}((\mathbf{A}_2, \mathbf{E}))$ and $f^{-1}((A_1, E)) \cap f^{-1}((A_2, E)) = \phi$. Hence \tilde{X} is a soft $(1,2)^*$ -b- \widetilde{D}_2 -space. By the same way we can prove that other cases.

References

- [1] Molodtsov D., "Soft set theory-First results", Comput. Math. Appl., 37 (4-5), 19-31, 1999.
- [2] Mahmood S.I. "Semi (1,2)*-Maximal Soft (1,2)*-Pre-Open Sets and Semi (1,2)*-Minimal Soft (1,2)*-Pre-Closed Sets in Soft Bitopological Spaces", Iraqi Journal of Science, 58(1A),127-139, 2017.
- [3] Nazmul Sk. and Samanta S. K., "Neighbourhood properties of soft topological spaces", Annals of Fuzzy Mathematics and Informatics,1-15, 2012.
- [4] Revathi N. and Bageerathi K., "On Soft B-Open Sets in Soft Bitopological Space", International Journal of Applied Research, 1 (11), 615-623, 2015.
- [5] Senel G. and Çagman N., "Soft bitopological spaces", Journal of new results in science, 2014.
- [6] Shabir M. and Naz M., "On soft topological spaces", Computers and Mathematics with Applications, 61(7), 1786-1799, 2011.