
Journal of Al-Nahrain University Vol.13 (2), June, 2010, pp.247-255 Science

247

AUTOMATIC DISCOVERY OF CANDIDATE IN THE RELATIONAL
DATABASES KEYS BY USING ATTRIBUTES SETS CLOSURE

Yasmeen F. Al-ward
Department of Computer Science, College of Science, Al-Nahrain University.

Abstract
The automation of database design, design weak points' detection, re-engineering and schema

modification, and normalization of the database systems became the crucial aspects in databases
studies. In real applications databases the discovery of candidate keys is regarded as a challenge for
the designers. This research proposes an algorithm to automate the discovery of the candidate keys
in the databases depending on the attributes set closure and functional dependency, FD, rules. In
this research, the functional dependency rules are regarded as production rules to product binary
strings which represent the sets of attributes and the candidate keys. Representing the rules and the
sets of attributes as binary string allows proposing novel string matching and ordered strings
merging which linearly speed up the execution time according to the number of attributes and the
number of functional dependency rules.

The proposed system was tested successfully by using many actual and synthesis schemas and
dependencies some of these schemas and dependencies include one hundred attributes and one
hundred FD rules respectively.

Keywords: Data Redundancy, Canonical synthesis, Candidate keys, Normalization, Functional Dependency,
Attributes set closure, Production Rule System.

1. Introduction
The designer of relational database system

should address four measures of quality for
relation schema design [1]: Semantic of the
attributes described by functional dependency
(FD), Reducing the Redundant information in
tuples, Reducing the null values, and
Disallowing the possibility of generating
spurious tuples. FD is used to Formalize some
knowledge about the domain through some
special integrity constraints that is Functional
dependencies, FD.

In this research, a concentration will be
given for FD because it will be used in the
proposed algorithm.
2. Functional Dependency

This section includes some important
definitions as preliminaries to elucidate the
proposed algorithm and its implementation.
The definitions are adopted from [1, 2].

Definition (1):
Let R(A1,A2,....An) be a relational

schema, and let X and Y be subsets of
{A1,A2,....An}; we say that X functionally
determines Y, denoted by X → Y, if for each
state r (or extension) of R, it is not possible
that two tuples exist in r having equal values
for all attributes in X, and different values for
the attributes in Y.

Definition (2):
Let F be a set of functional dependencies

defined over a relational schema R, and let
X à Y be a functional dependency, we say
that F logically implies X à Y, denoted as
F |= X à Y, if each relation r of schema R
that verifies the functional dependencies in F,
also verifies X à Y. As a example: {A à B,
B à C} |= Aà C. Such set of rules is known
as Armstrong s axioms [3, 4].

Definition (3):
The notion of key will be re-formalized by

using the functional dependencies as follows:
lLet R be a relational schema with attributes

A1 A2.....An, and F be a set of functional
dependencies. Let X be a subset of R. X is a
key of R if:

1.X A1 A2.....An is in F+
2. There is no Y, proper subset of X, such that

Y A1 A2.....An is in F+ (minimality
condition).
l We use the term superkey to denote a
superset of the key.

Note that according to this definition, there
are many X's which are subsets of R, i.e., there
are many keys for a given table. These keys
are called candidate keys.

Yasmeen F. Al-ward

248

Definition (4):
l Let F be a set of functional dependencies

defined on a set D of attributes; let X be a
subset of D. The closure of X with respect to
F is denoted by X+ and is defined as the set
of attributes{A | F |= XàA} = {A | XàA
follows from F by applying the
Armstrong axioms}
l XàY∈ F+ if and only if Y∈ X+ with

respect to F.
This research depends on the definitions

above especially (4, and 5) to produce an
algorithm to automatically generate all the
candidate keys in a relational database.

3. The Importance of The Candidate Keys
Discovery

The discovery of candidate keys is time
consuming process because it is massive
computational process [2]. Note that if the
relational table includes N attributes then the
designer should check (2N-1) sets of attributes
to determine the set of candidate keys. The
discovery of candidate keys in relational
database is very important in many cases such
as:
1) The conceptual phase of database design

usually depends on entity-relation diagram
(ERD) or Unified Modeling Language
(UML). It is not uncommon that the
designer performs many mistakes in this
phase. The immorality of this phase will be
transmitted to the mapping sub phase of
logical phase which lead to imprecise
table(s). The imprecise schemas
frequently cause data redundancy. One
solution to this problem is the
normalization which depends mainly on
the candidate keys such as 3NF, 4NF, and
5NF.

2) Database system re-engineering and
database modification. Many enterprises
use bad-designed databases which require
re-engineering or special-care modification
by adding or removing some attributes,
data type conversion, table splitting, etc.
All of these processes require re-
determining of the candidate keys.

3) Candidate keys discovery easies the study
of the relationships between the attributes
of the tables of the database and then helps
in the determining the foreign keys.

4) The candidate keys enable the best selection
of the primary key. It is well-known that a
table may contain many keys, candidate
keys, and it may be complex process to
compute all these keys and select a suitable
one as a primary key.

5) All of the mentioned above, but the
normalization, will enhance the querying of
the database.

4. The Proposed Algorithm Of Candidate
Keys Discovery
From the definitions presented in section

two, it is obvious that the closure of set of
attributes represents a key in the table if it
contains all the attributes of the table because
it represents direct or indirect dependency.
Fig. (1) depicts the algorithm of attributes set
closure, X+. The input of this algorithm is the
rules of functional dependency, the set of
attributes of the table D, and a set of attributes,
X, to computes its closure. The output of this
algorithm is X+. X is subset of D. This
algorithm will be invoked frequently to
compute the closures of all the possible set of
attributes of the table's attributes, see Fig. (2).
A sequence of sets will be generated until no
more new set generated. Initially X(0)=X, then
X(1)=X(0) + A if there is a dependency YàZ
is in F such as A is in Z and Y ⊆ X(i). Then
x(1) will be computed and so forth until
X(i)=X(i+1).

Journal of Al-Nahrain University Vol.13 (2), June, 2010, pp.247-255 Science

249

Fig.(1) : Closure of a set of attributes algorithm.

Fig. (2) : Candidate keys Discovery Algorithm.

The higher order algorithm to compute the
closures of the set is shown in Fig.(2).
According to this algorithm the sets of length 1
is generated and sent to compute their
closures, then the set of length 2, and so on.
Actually the algorithm contains many general
steps and many hidden steps which will be
explained gradually to ease the understanding
of the research.

5. The Proposed System Architecture
Fig.(3) shows the architecture of the

proposed system. Some of the aspects of
designing production rules systems, [3, 4] are
adopted to design the proposed system. We

regard the functional dependency rules, F, as
production rules which produce the closures of
attributes. The input to the system is F and the
set of the attributes of a table. Indeed, the
attributes of a given table is fetched from the
data dictionary in a table of N rows, each row
contains the attribute name and its code. Each
attribute is assigned a code to avoid the
complexity if the complete attribute name is
used in the process. F is represented as a table
of rules. Each row contains rule number, right
hand side of the rule, and left hand side.

Closure of a set of attributes algorithm
l Input: A finite set D of attributes, a set F of functional dependencies, and a set X ⊆

D
l Output: X+, closure of X with respect to F
l Approach: A sequence of attribute sets X(0), X(1),...,X(n) is computed:

{
X(0) is X; i=0;

While(true) {
X(i+1) = X(i) ∪ A , where A is a set of attributes such that:

l A dependency YàZ is in F
l A is in Z
l Y ⊆ X(i)

• If x(i)=x(i+1) return x(i+1);
• else i++; }

}

Discovery of Candidate keys Algorithm
l Input: A finite set D of attributes, a set F of FDs, and a set X ⊆ D
l Output: X+, closure of X with respect to F, for all X ⊆ D.
{

1. N=length(D)
2. for(i=1; i<=2N-1; i++)
4. {
3. Generate a set of attributes X;
4. Call Closure of a set of attributes algorithm (D,F, X); //see figure(1)

X+= Closure of a set of attributes algorithm (D,F, X);
5. If X+ =D then add X to candidate keys table;
6. }

}

Yasmeen F. Al-ward

250

Fig.(3) : The Proposed System Architecture.

The rules representation depends on the
code stored in D for each attribute name. The
structure of F will be elucidated in section
(5.3.1).

5.1. Attributes Sets Generator
The attributes sets D, the LHS and RHS of

F, and the generated sets of attributes are
stored and manipulated alphabetically, this
process easies the generation process of the
sets of attributes which we need to compute
their closures. This module is designed
according to the algorithm presented in
Fig. (4). For more explanation Consider
example (1):

Example (1):
Let R=(C,G,H, R, S,T) is the attributes set

of a table where C, G,H, R, S, AND T are the
code of the following attributes: C=Course,
T=Teacher, H=Hour, S=Student, G=Grade,
and R=Room. F consists of the following
dependencies: CàT; each course has only one
teacher, HRàC; only one course can be given
in a given classroom and hour, HTàR; a
teacher cannot be in two classrooms at the
same hour, CSàG; each student receives a
single grade for each exam, HSàR; a student
cannot be in two different classrooms at the
same time.

Fig. (4) : Attributes Sets Generator Algorithm.

Now according to step (1),
1st_leve1={C,G,H,R, S,T}. The second step
will generate 2nd _level={CG, CH, CR, CS,

CT, GH, GR, GS, GT, HR,HS, HT, RS,
RT,ST}. The iterative steps will generate the
following levels:

1.1st _level=D;
2. Insert 1st _level in Attributes_Sets Table
3. 2nd _level={All alphabetically ordered sets of length 2 generated from D}
4. Insert 2nd _level in Attributes_Sets Table
5. for (i=3; i<= N; i++){
7. for all s1 belongs to ith_level-1 and s2 belongs to ith level-1 do the following
8. if s1[1]=s2[1] && s1[2]=s2[2]&&.....s1[i-2]=s2[i-2]&& s1[i-1]<s2[i-1]
9. { s=concat(s1,s2[i-1]); ith_level += s; }
10. insert ith_level in Attributes_Sets Table;
11 }

Rule Scheduler

Rule Interpreter

Attributes Sets
Generator

Super keys Eliminator

D

X
Attribute Set

Key Filter

Candidate
Keys
Table

 Execution Flow
Data Flow

Attributes
Sets Table

D F

Inference Engine

X+

Journal of Al-Nahrain University Vol.13 (2), June, 2010, pp.247-255 Science

251

3rd_level={CGH,CGR, CGS, CGT, CHR,
CHS, CHT, CRS, CRT, CST, GHR, GHS,
GHT, GRS, GRT, GST, HRS, HRT, HST,
RST}

4th_level={CGHR,CGHS, CGHT, CGRS,
CGRT, CGHT, CHRS, GHRT, CHST,
CRST, GHRS, GHRT,GHST, GRST,
HRST}

5th_level={CGHRS, CGHRT, CGHST,
CGRST, CHRST,...}

6th_level={CGHRST}.
The generated sets of attributes above are

inserted in the attributes sets table. Each row
in this table consists of the set and its length.
Then Superkeys Eliminator will fetch one set
by one set from the table according to its
length from the first level to nth level. The
design and the important duty of this module
are explained in the next section.

5.2.Superkeys Eliminator
This module depends on smart fact derived

from definition (4) that is "All the super sets,
(superkeys) of a key are not keys". The key
should satisfy the minimality property.
Therefore, this module fetches the sets of

length one, and then of length two, and so on
from attributes set generator. When this
module fetches a set K of length L, it
degenerates K to its subsets of length L-1. If
anyone of these subsets is stored in Candidate
Keys Table, then K will be removed because it
is not a key but it is a superkey of K. For
instance, suppose that HS is a key in the
schema presented in example (1), hence this
module will ignore {CHS, GHS, HRS, HST,
CGHS, CHRS, CHST, GHRS, GHST, HRST,
CGHRS, CGHST, CHRST, CGHRST}
because these sets of attributes are super keys
of HS. The eliminator is accomplished
according to the algorithm presented in
Fig.(5). This module takes its inputs from
Attributes Sets Table and Candidates Keys
Table as shown in Fig. (3). It retrieves a set S
with its length L from the sets of attributes
table in step (4) and degenerates S to its
subsets of length L-1 by using a function
called subset. This function takes S, its length
L as input and produce all its subsets of length
L-1, these operations are done in step (5).

Fig.(5) : Super Keys Eliminator Algorithm.

Step (6) keeps a loop according to the
cardinality of SUB to check if one of the
elements of SUB is a key and stored in
candidate keys Table. If so, S will be ignored
and the outer loop will be continued to fetch
new S from Sets of Attributes Table.

5.3. Inference Engine
Inference Engine, IE is responsible for

producing X+, i.e., attributes set closure one
closure at a time and sends the closure to Key
filter module to check the validity of the
closure as a key.

IE consists of two modules the rules
scheduler and interpreter. The skeleton of IE

Input: Attributes Sets Table and Candidates Keys Table
Output: S a set of attributes
1. SuitableS=false;
2. while(!SuitableS || end_of_table(Attributes Sets Table) {
4. Fetch a set S and its length L from Attributes Sets Table.
5. Degenerate S to its set subsets of length L-1;

generate_subset(S,L,SUB);
6. For all sl belongs to SUB do {
8. if sl is stored in Candidates Keys Table do not send S to IE Module;
9. exit for; }
11. if (!SuitableS) {
13. Return S to Inference Engine Module;
14. SuitableS=!Suitable; }
15. }

Yasmeen F. Al-ward

252

is shown in Fig. (6). The outer loop is to
manipulate all the sets of attributes after
generating these sets by the attributes sets
generator.

5.3.1 Rules scheduler
This module is a part of the inference

engine, IE. To explain the design of this
module, we'll explain the structure of F table.

The structure of this table is represented as
binary table which consists of three fields rule
number, left hand side LHS, and right hand
side, RHS. Indeed, LHS and RHS are
compound fields each of one consists of many
fields. There exists one field for each attributes
of a table under processing.

Fig.(6) : The Skeleton of IE.

The values of the sub-fields are 0 or 1. For
instance, the rules of example (1) are presented
in Table (1). The first raw represents the first
rule C àT, the second rule is presented in the
second raw HRàC, and so on. This

representation is sparse-matrix like which
wastes some extra storage but there are many
benefits which are gained in string matching
and substitution as will be explained.

Table (1)
Functional Dependency Rules Representation.

LHS RHSRule
C G H R S T C G H R S T

1 1 0 0 0 0 0 0 0 0 0 0 1

2 0 0 1 1 0 0 1 0 0 0 0 0
3 0 0 1 0 0 1 0 0 0 1 0 0
4 1 0 0 0 1 0 0 1 0 0 0 0
5 0 0 1 0 1 0 0 0 0 1 0 0

This representation is used for the
generated sets of attributes which are produced
by Attributes Sets Generators. For example,
the set of attributes {G, H, R}, i.e., GHR is
represented as "011100". 1's represent the
presence of G, H, and R attributes, while 0's
represent the absence of C, S, and T attributes.

Recall that the rule scheduler presents a rule
for firing by the interpreter. The scheduler
determines the required rule by checking the
condition: LHS(R) ⊆ X(i). This checking
requires implementation of one of string
matching algorithms [5,6]. To avoid this
execution-time-consumption implementation

Inference Engine Algorithm
l Input: indices of finite set D of attributes,

A set F of functional dependencies, each functional dependency represented
as (binary string) (binary string), and the Attributes Sets Table. The table
consists of Xs; X ⊆ D; X is binary string.

• Output a sequence of X+'s.
{

Make fresh copy of F; F_Fresh_Copy;
Order F_Fresh_Copy from longest to shortest RHS length.
while (Attributes Sets Table is not empty) do{

fetch a new set of attributes X;
 X+=interpreter(D, F, X);

//Note that the interpreter will call the scheduler, see figure(8).
Key_filter(X+);}

}

Journal of Al-Nahrain University Vol.13 (2), June, 2010, pp.247-255 Science

253

we convert it to ANDing operation only. For
example, suppose (HS)+ is required to be
computed, and the candidate rule is HSàR.
The scheduler will (and) HS with (HS)+, i.e.,
001010 & 001010= 001010. The result means
that
LHS(R) ⊆ X(i) and the rule is suitable for
firing. The firing is done by the interpreter
module. The scheduler algorithm is elucidated
in Fig.(7). The scheduler uses the fresh copy of
the dependencies which are ordered from the
RHS-highest length to lowest one. The
scheduler selects the top list rule. This
heuristic rapidly constructs X+ by minimum
number of steps because maximum number of
attributes will be added to X(i) in each
iteration. The LHS of the selected rule will be
added to the closure if LHS is included in the
X(i).

5.3.2 Rule Interpreter
The interpreter receives a rule number of

the rule to be fired. The firing process is
generating X(i+1) by joining two ordered sets
of attributes. To accomplish the joining
process, the algorithm of merging two ordered
lists [5, 6] is required to be implemented,
which is a part of merge sort. This algorithm is
time consumption process. Therefore, a novel
operation is suggested, to avoid merging
operation, that is ORing the X(i) and RHS of a
rule. For example, HS(0)=HS and the
candidate rule is HSàR, HS(1)=HRS which
obtained by (001010 | 000100)=001110= HRS.
Accordingly, the algorithm of computing
attributes set closure, X+, becomes as
presented in Fig.(8).

Fig.(7) : The Rules scheduler Algorithm.

Rule Scheduler Algorithm
l Input: indices of finite set D of attributes,

A set F of functional dependencies, each FD represented as (binary
string) (binary string), and a set X ⊆ D; X is binary string.

l Output: A rule of the form (binary string) (binary string).
l Approach: A sequence of attribute sets X(0), X(1),..., X(n) is computed:

{
no_suitable_rule=false;
While(!no_suitable_rule) {

Fetch a highest order rule R from F_Fresh_Copy;
if (X & lhs(R)== X) // x anding lhs(R)
{ store rule number in the explanation_list;

return(R); //return R and exit}
• If (!no_suitable_rule) return (null);}

}

Yasmeen F. Al-ward

254

Fig.(8) : Closure of a set of attributes algorithm.

5.4 Key Filter Module
The input of the Key Filter module, KF, is

the set of the attribute of the table under
processing and a closure of set of attributes,
X+, generated by the IE. KF is frequently
invoked by IE to check the elements of X+, it
should be includes all the members of D. To
avoid the iterative sequential search, this
module depends on the binary ORing
operation to check the validity of X+ as a
candidate key. KF ors X+ and D, if the result
consists of stream of 1's with length equals to
the |D|, then X+ is a candidate key. KF writes
the candidate keys to the candidate keys table.

Discussion, Conclusions, and Future Works
Many actual and synthetic schemas had

been used to test the candidate keys discovery
system, some of which contain up to one
hundred rules and one hundred attributes. The
considerable amount of execution time is
consumed in the generating of the sets of
attributes which is accomplished by the
attributes sets generator module. Another time
consumer module is the superkeys eliminator
module, which trims the super keys of a valid
candidate key because they are not keys. This
implementation was developed depending on
the binary representation of the functional
dependency table F and the ANDing and
ORing operators. This implementation
reduced the execution time of "one hundred
dependencies and one hundred attributes" test

to % 65.33 of the execution time of the first
implementation which depends merging two
sorted lists. Also, the tests show that the
execution time is increased according to the
number of dependencies and the number of
attributes.

This research emits many future works and
researches such as:
1) Add a complementary module to

automatically determine the functional
dependencies depending on Armstrong's
axiom. This module will be responsible for
building F table.

2) This research can be used for automatic
normalization, especially 2NF, 3NF,
BCNF, and 4NF.

3) The research can be used for automatic
analyzing the schemas of the tables of a
database to determine the foreign keys.

4) One can define the criteria to determine the
primary key of the table under processing,
and then these criteria can be applied on
the candidate keys to select a suitable one
as a primary key.

References
[1] Molina, Jeffrey D., Ullman, Jennifer

Widom, "Database systems: The complete
Book", Prentice Hall, 2008.

[2] Joseph M. Hellerstein, Michael
Stonebraker, "Readings In Database
Systems", MIT Press, 2005.

Closure of a set of attributes algorithm
l Input: indices of finite set D of attributes,

A set F of functional dependencies, each FD represented as binary
string binary string,& a set X ⊆ D; X is binary string.

l Output: X+, closure of X with respect to F represented as binary string.
l Approach: A sequence of attribute sets X(0), X(1),...,X(n) is computed :

{
X(0) is X; i=0;

While (true) {
//invoke the scheduler to fetch asuitable rule where lhs(R) is subset of X(i).

• If Rule_scheduler(R) {
X(i+1) = X(i) | RHS(R); //ORING

• If x(i)=x(i+1) return x(i+1);}
• else return X(i); //null rule
• i++;}

}

Journal of Al-Nahrain University Vol.13 (2), June, 2010, pp.247-255 Science

255

[3] Joseph C. Giarratano, "Expert Systems:
Principle and Programming", 4ed, Course
Technology, 2004.

[4] Jones, G., "Production Systems and Rule-
based Inference", Encyclopedia of
Cognitive Science, Vol.3, 2003.

[5] ROBERT SEDGEWICK, "ALGORITHMS",
Addison-Wesley, 2003.

[6] Thomas H. Cormen, Ronald L. Revest,
Charles E. Leierson, "Introduction to
Algorithms", MIT Press, 2001.

 .

 .

 .

 .

 .

.

