ADOMAIN DECOMPOSITION METHOD FOR SOLVING SYSTEMS OF MULTI-DIMENSIONAL LINEAR FREDHOLM INTEGRAL **EQUATIONS OF THE SECOND KIND**

Ahlam Jameel Khaleel* and Hanan Mahmood Hasoon** *College of Science, Al-Nahrian University. **College of Education, Ibn Al-Haithm, University of Baghdad.

Abstract

The aim of this work is to use Adomian decomposition method to solve Systems of multidimensional linear Fredholm integral equations of the second kind.

1-Introduction

Adomain decomposition method was first introduced by Adomain G. in 1980. This method is used to solve differential equations, [1], [2]. The convergence of Adomian decomposition method applied to the onedimensional integral equations is discussed in [5]. Moreover this method is used to solve systems of the one-dimensional Volterra integral equations of first kind, [4], systems of linear equations and systems of the onedimensional Volterra integral equations of second kind, [3], systems of the onedimensional Fredholm integral equations of the second kind, [7] and systems of fractional differential equations, [6]. Here we use this method to solve systems of the multidimensional linear Fredholm integral equations of the second kind:

$$u_{i}(x_{1}, x_{2}, ..., x_{n}) = f_{i}(x_{1}, x_{2}, ..., x_{n}) + \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} ... \int_{an}^{b_{n}} \sum_{j=1}^{n} k_{i,j}(x_{1}, x_{2}, ..., x_{n}, y_{1}, y_{2}, ..., y_{n}).$$

$$u_{i}(y_{1}, y_{2}, ..., y_{n}) dy_{n} dy_{n-1} ... dy_{1}, i = 1, 2, ..., n$$

Where f_i is a known function of $x_1, x_2, ..., x_n, k_i$ is known function of $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n, \{a_i\}_{i=1}^n, \{b_i\}_{i=1}^n$ constants such that $a_i \leq x_i \leq b_i$, i=1,2,...,n and $u_1, u_2,...,u_n$ are the unknown functions that must be determined.

2- Adomain Decomposition Method Applied to System(1)

the system of the multi-Consider dimensional linear Fredholm equations of the second kind given by equation (1).

We rewrite this equation as a canonical form of Adomain's equation by letting

$$N_{i}(x_{1}, x_{2}, ..., x_{n}) = \int_{a_{i}}^{b_{i}} \int_{a_{i}}^{b_{i}} ... \int_{an j=1}^{bn} k_{i,j}(x_{1}, x_{2}, ..., x_{n}, y_{1}, y_{2}, ..., y_{n})$$

$$u_{j}(y_{1}, y_{2}, ..., y_{n}) dy_{n} dy_{n-1} ... dy_{1}$$
(*)
get

to get

$$u_j(x_1, x_2, ..., x_n) = f_i(x_1, x_2, ..., x_n) + N_i(x_1, x_2, ..., x_n)$$

To solve equation(2) by Adomain's decomposition method, we let

$$u_j(x_1, x_2,...,x_n) = \sum_{m=0}^{\infty} u_{i,m}(x_1, x_2,...,x_n)$$

$$N_i(x_1, x_2, ..., x_n) = \sum_{m=0}^{\infty} A_{i,m}$$

 $A_{i,m}$, m = 0,1,... are polynomial depending on $u_{1,0}, u_{1,1}, \dots, u_{1,m}, \dots, u_{n,0}, u_{n,1}, \dots, u_{n,m}$ and they are called Adomian polynomials. Hence, equation (2) can be rewritten as:

$$\sum_{m=0}^{\infty} u_{i,m}(x_1, x_2, ..., x_n) = f_i(x_1, x_2, ..., x_n) +$$

$$\sum_{m=0}^{\infty} A_{i,m}(u_{i,0}, u_{i,1}, ..., u_{i,m}, ..., u_{n,0}, u_{n,1}, ..., u_{n,m})$$
......(3)

From equation (3) we define:

$$\begin{split} &u_{i,0}(x_1,x_2,...,x_n) = f_i(x_1,x_2,...,x_n),\\ &u_{i,m+1}(x_1,x_2,...,x_n) =\\ &A_{i,m}(u_{1,0},u_{1,1}...,u_{1,m},...,u_{n,0},u_{n,1},...,u_{n,m}),\\ &i=1,2,...,n,m=0,1,... \end{split}$$

To determine Adomain polynomials, we consider the expansions:

$$u_{i,\lambda}(x_1, x_2, ..., x_n) = \sum_{n=0}^{\infty} \lambda^m u_{i,m}(x_1, x_2, ..., x_n),$$
 (5)

$$N_{i,\lambda}(x_1, x_2, ..., x_n) = \sum_{m=0}^{\infty} \lambda^m A_{i,m}$$
(6)

where λ is a parameter introduced for convenience. From equation (6) we obtain:

$$A_{i,m} = \frac{1}{m!} \left[\frac{d^{m}}{d\lambda^{m}} N_{i,\lambda}(u_{1}, u_{2}, ..., u_{n}) \right]_{\lambda=0} ...(7)$$

and from equations (*), (5) and (7) we have:

So, the solution of the system given by equation(1) will be as follows:

3-Numerical Example

In this section we give two examples of systems of multi-dimensional linear Fredholm integral equations of the second kind with their approximated solutions via Adomain decomposition method.

Example (1):

Consider the tow-dimensional linear Fredholm integral equation of the second kind:

$$u(x, y) = xy^{2} - \frac{1}{8}x + \int_{0}^{1} \int_{0}^{1} xmu(z, m)dzdm$$

This example is constructed such that the exact solution of it is $u(x, y)=xy^2$. Here we use Adomain decomposition method to find the solutions u. To do this we use the following Adomain scheme:

$$u_0(x, y) = xy^2 - \frac{1}{8}x$$

and

$$u_{r+1}(x,y) = \int_{0}^{1} \int_{0}^{1} xmu_{r}(z,m)dzdm, r = 1,2,...$$

For the first iteration, we have:

$$u_{1}(x,y) = \int_{0}^{1} \int_{0}^{1} x m u_{0}(z,m) dz dm$$
$$= \frac{3}{32} x.$$

Therefore the approximated solution of this example with two terms is:

$$Q_2(x, y) = u_0(z, m) + u_1(z, m)$$
$$= xy^2 - \frac{1}{8}x + \frac{3}{32}x$$
$$= xy^2 - \frac{1}{32}x.$$

For the second iteration, we have:

$$u_2(x,y) = \int_0^1 \int_0^1 xmu_1(z,m)dzdm$$

= $\frac{1}{32}x$.

Therefore the approximated solution of this example with three terms is:

$$Q_3(x, y) = u_0(x, y) + u_1(x, y) + u_2(x, y)$$
$$= xy^2 - \frac{1}{8}x + \frac{3}{32}x + \frac{1}{32}x$$
$$= xy^2$$

Not that $Q_3(x, y) = xy^2$ is the exact solution of this example.

Example (2):

Consider the system of the twodimensional linear Fredholm integral equations:

$$u_1(x,y) = \frac{7}{12}xy + \int_0^1 \int_0^1 xy(u_1(z,m) + u_2(z,m))dzdm$$

$$u_2(x,y) = \frac{17}{24}x^2y + \int_0^1 \int_0^1 x^2yz(u_1(z,m) + u_2(z,m))dzdm$$

This example is constructed such that the exact solution of it is

$$u_1(x, y) = xy \text{ and } u_2(x, y) = x^2y.$$

Here we use Adomain decomposition method to find the solutions u_1, u_2 of this example. To do this we use the following Adomain scheme:

$$u_{1,0}(x, y) = \frac{7}{12}xy$$

$$\approx 0.5833xy$$

$$u_{2,0}(x, y) = \frac{17}{24}x^2y$$

$$\approx 0.7083x^2y$$

and

$$\begin{split} u_{1,r+1}(x,y) &= \int\limits_{0}^{1}\int\limits_{0}^{1}xy(u_{1,r}(z,m) + u_{2,r}(z,m))dzdm, \\ r &= 1,2,... \\ u_{2,r+1}(x,y) &= \int\limits_{0}^{1}\int\limits_{0}^{1}x^2yz(u_{1,r}(z,m) + u_{2,r}(z,m))dzdm, \\ r &= 1,2,... \end{split}$$

For the first iteration, we have:

$$u_{1,1}(x,y) = \int_{0}^{1} \int_{0}^{1} xy(u_{1,0}(z,m) + u_{2,0}(z,m))dzdm$$

$$= \frac{9}{72} xy$$

$$\approx 0.2639xy.$$

$$u_{2,1}(x,y) = \int_{0}^{1} \int_{0}^{1} x^{2}yz(u_{1,0}(z,m) + u_{2,0}(z,m))dzdm$$

$$= \frac{107}{576} x^{2}y$$

$$\approx 0.1858x^{2}y.$$

Therefore the approximated solutions of this example with two terms are:

$$Q_{1,2}(x,y) = u_{1,0}(x,y) + u_{1,1}(x,y)$$

$$= \frac{7}{12}xy + \frac{19}{72}xy$$

$$\approx 0.5833xy + 0.2639xy$$

$$\approx 0.8472xy$$

$$Q_{2,2}(x,y) = u_{2,0}(x,y) + u_{2,1}(x,y)$$

$$= \frac{17}{24}x^2y + \frac{107}{576}x^2y$$

$$\approx 0.7083x^2y + 0.1858x^2y$$

$$\approx 0.8941x^2y$$

For the second iteration, we have:

$$u_{1,2}(x,y) = \int_{0}^{1} \int_{0}^{1} xy(u_{1,1}(z,m) + u_{2,1}(z,m))dzdm$$

$$= \frac{335}{3456} xy$$

$$\approx 0.0969xy.$$

$$u_{2,2}(x,y) = \int_{0}^{1} \int_{0}^{1} x^{2}yz(u_{1,1}(z,m) + u_{2,1}(z,m))dzdm$$

$$= \frac{929}{13824} x^{2}y$$

$$\approx 0.0672x^{2}y.$$

Therefore the approximated Solutions of this example with three terms are:

$$\begin{split} Q_{1,3}(x,y) &= u_{1,0}(x,y) + u_{1,1}(x,y) + u_{1,2}(x,y) \\ &= \frac{7}{12} xy + \frac{19}{72} xy + \frac{335}{3456} xy \\ &= \frac{3263}{3456} xy \\ &\approx 0.9442 xy. \\ Q_{2,3}(x,y) &= u_{2,0}(x,y) + u_{2,1}(x,y) + u_{2,2}(x,m) \\ &= \frac{17}{24} x^2 y + \frac{107}{576} x^2 y + \frac{929}{13824} x^2 y \\ &= \frac{13289}{13824} xy^2 \\ &\approx 0.9613 x^2 y. \end{split}$$

In the same way, the components $Q_{1,k}(x,y)$ and $Q_{2,k}(x,y)$ can be calculated for k=4, 5,... The solutions with ten terms are given as:

$$\begin{aligned} Q_{1,10}(x,y) &= \sum_{i=0}^{9} u_{1,i}(x,y) \\ &= \frac{47544222539155}{47552535724032} xy \\ &\approx 0.9998 xy. \\ Q_{2,10}(x,y) &= \sum_{i=0}^{9} u_{2,i}(x,y) \\ &= \frac{63395395174439}{63403380965376} x^2 y \\ &\approx 0.9999 x^2 v. \end{aligned}$$

4- Conclusion

As seen before Admian decomposition method have been successfully employed to obtain the approximated solutions of systems of the multi-dimensional linear Fredholm integral equations of the second kind. More accurate results can be obtained by increasing the number of iteration . On the other hand, finding the approximated solutions of systems of the multi-dimensional nonlinear Fredholm integral equations of the second kind by using Adomian decomposition method is a good subject for further research.

5-References

- [1] k. Abbaoui and Y. Cherruault, "Convergence of Adomian's Applied to Differential Equations", Math1, Comput, Model, Vol. 28, No.5, 1994, pp. 103-110.
- [2] G. Adomian, "Solving Frontier Problems of Physics", Decomposition Method Kluwer, 1994.
- [3] E. Babolian, J. Biazar and A. Vahidi, "On the Decomposition Method for System of Linear Equations and System of Linear Volterra Integral Equation", Appl. Math. Comput., Vol. 147, 2004, pp.19-27.
- [4] J. Biazar, E. Babolian and R. Islam, "Solution of A System of Volterra Integral Equations of the First Kind by Adomian Method", Appl. Math. Comput., Vol. 139, 2003, pp.249-258.
- [5] Y. Cherruault and G. Saccomandi, "New Results for Convergence of Adomian Method Applied to Integral Equations", Math1. Comput. Model. Vol.16, No. 2, 1992, pp. 83-93.
- [6] M. Shaher and Kamel Al-Khaled, "Numerical Solutions for Systems of Fractional Differential Equations by the DecompositionMethod", Appl. Math. Comput., Vol. 162, 2005, pp. 1351-1365.
- [7] A. Vahidi and M. Mokhtari, "On the Decomposition Method for System of Linear Equations Fredholm Integral Equations of the Second Kind", Appl. Math. Scien., Vol.2, No.2, 2008, pp.57-62.