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ARTIN EXPONENT OF USING BRAUER
COEFFICIENT THEOREM

Awss Jabbar Majeed

Abstract
In this paper, we consider the Artin exponent of the Groups of unitriangular matrices

from the principal character of its cyclic subgroups and denoted by where ,

, p is prime number, and we found that .Furthermore, we found that, the

order of this group , its exponent, and found general forms of
all conjugacy classes

Introduction
Let G be a finite group and let f be an

integral valued class function on G, Artin
induction theorem[6] states that is an
integral linear combination of characters of G
induced from characters of principle
representations of cyclic subgroups of G.

In (1968), Lam [6] proved a sharp form of
Artins theorem, he determined the least
positive integer such that is an
integral linear combination of induced
principal characters of cyclic subgroups for all
rational valued characters of G.

In this work, the group G under
consideration is Groups of unitriangular
matrices , where and  , p
is prime number, The main results will be
stated in section 2, as follows : in theorem(2.8)
we give the general forms of all conjugacy
classes of G, Furthermore, we found the order
of G and its exponent in theorem(2.3) and
theorem(2.4) respectively.

1-Basic Concepts and Theorems
In this section we will introduce the basic

notations and definitions for the later work.

Definition(1.1), [8]:
Let F be a field. Then the general linear

group is the group of all invertible
(n n) matrices with entries in F under matrix
multiplication . 
Definition(1.2), [5]:

Let V be a vector space over any field F,
GL(V) denotes the group of all linear
isomorphism of V onto itself.

Definition(1.3), [1]:
A representation of a group G is a

homomorphism T : G GL(V).

Definition(1.4), [1]:
A matrix representation of a group G is a

homomorphism T : G GL(n,F), where n is
called the degree of the matrix representation.

Definition(1.5), [4]:
A representation T : such

that T(x)=1 , , it is called the linear
representation or principle representation of G.
Definition(1.6), [2]:

A class function on a group G is a
function which is constant on
conjugacy classes ,that is,

  . 
If all value of are in , then it is called

valued class function.

Definition(1.7), [3]:
Let T be a matrix representation of a finite

group G over a field F, the character of T
is the mapping defined by

, where
refers to the trace of the matrix  . 
Clearly, nx(1) = , which is called the degree
of ,also character of degree 1 is called linear
character.

Definition(1.8), [3]:
The function 1G with constant value 1 on

, is a linear character, it is called the principle
or unit character of G.
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Lemma(1.9):
Characters of a group are class functions

on . Proof:see[3].

Definition(1.10),[4]:
Let G be a finite group and let

H Then the normalize of H in G :
(H)= .

Lemma(1.11):
Let be a finite group, and let .

Then the number of elements in the conjugacy
class of is equal to the index of
the centralizer of in .
Proof:see [7].

Lemma(1.12):
Let be a rational valued character of G ,

then, for all  . 
Proof:see [3].

Lemma(1.13):
Let be a rational valued character of G,

and let with ,
Then  . 
Proof:see[3].

Definition(1.14), [3]:
Let H be a subgroup of a group G and be

a class function of H, then , the induced
class function on G is given by :

Where

Clearly is a class function on G and
  . 

Another useful formula for computing
explicitly is to choose

representatives for the
classes of contained in the conjugacy class

in G which is given by

 .....(1-1)

Where if . This
formula is immediate from the definition of

since as runs over G ,
for exactly values of .

Proposition(1.15):
Let H be a subgroup of G, and to be a

character of H, then is a character.

Definition(1.16), [6]:
The character induced from the unit

character of a cyclic subgroups of G is called
Artin character, and denoted by

Example(1.17):
The three conjugacy classes of the

symmetric group are
, and

, We calculate the
Artin characters (induced characters) of
from the unit characters of the cyclic
subgroups  , i=1,2,3 by using formula (1-1)
The orders of the three classes are

and the orders of the centralizers are
 ,  , 

Thus
1) (13) : ,

and
Since,

and
2) ,

and

Since,
3)

and

Since, .

Table (1-1)
Artin characters of S3.

1 3 2

6 2 3

6 0 0

3 1 0

2 0 2
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Definition(1.18), [6]:
The Artin exponent, , of a group G is

the smallest positive integer such that
is an integer linear combination of the

induced principle characters of the cyclic
subgroups of G, for all rational valued
characters of G.

Remark(1.19), [6]:
Let be the full set of

non-conjugate cyclic subgroups of G. We
write , for the principle character on and
denote the Artin character (induced character)
on G by , which is the character afforded
by the rational representation of G and it is
clearly depends only on the conjugacy class of
the cyclic subgroup .

Definition(1.20), [6]:
Let G be a finite group, an integer

is said to be an Artin exponent for G if, given
any rational character on G such that
: is solvable for integer
unknowns and for any given rational
character on G.

Remark(1.21), [6]:
All Artin exponents form an ideal in the

integers and [G:1] is in this ideal We pick the
(unique) positive generator for this ideal
and we shall call it the Artin exponent of ,

divides .

Proposition(1.22):
Let 1G denote the principal character of G

and , then is an Artin exponent of G
if it has the following property:
There exist (unique) integers such
that
Where are the Artin characters.
If, have no common factor, then

and conversely.
Proof : see[6].

Proposition(1.23):
Let G be an arbitrary finite group,

and be a full set of non
-conjugate cyclic subgroups of G, then is
the smallest positive integer such that:

..............(1-2)
With each  . 
Proof:see[6].
Remark(1.24), [6]:
1) If is a positive integer , and (1-2) holds

for some set of integers with greatest
common divisor =1, then necessarily

.
2) Given a group G, We can compute the

characters explicitly, and then use
proposition (1.22) to determine .

Theorem(1.25):
iff G is cyclic.

Proof:see[6].

Remark(1.26), [6]:
gives an interesting numerical

measure of the deviation of G from being a
cyclic group. The invariant is, therefore,
merely a measure of noncyclicity.

Example(1.27):
Consider , Let

with cyclic subgroups of order .According
to example(1.17) and its table, if we multiply

by -1 , by 2 , and by 1,
then we have :

and therefore .

Definition(1.28), [4]:
Let G be a group, then the exponent of G is

the least common multiple of the orders of its
elements, and denoted by exp(G)

Definition(1.29):

This function is called the Mobius function
Then

Theorem(1.30): [Brauer Coefficient Theorem]
For any finite group G

If n=1

If n is not square free

If n=p1.p2…pr where the pi

are distinct primes.
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, where

The summation being over all cyclic
subgroups c of G over

2- Artin Exponent of
This section concerns with some members

of an important class of groups; the finite
linear groups, groups of unitriangular matrices

with n=4 and , p is prime
number. After describing important features of
groups and investigating their conjugacy
classes we move on to evaluate its Artin
Exponent.

Definition(2.1), [8]:

Let be the

group of upper unitriangular
matrices with entries in F under matrix
multiplication, that is, consists of
matrices such that for all and

for all  . 
is a subgroup of

In this work we interested in the group

,

where p is prime number.

Theorem(2.2):
The order of the group is

Proof 1:

Order of the group depending on
choices number of  .

can be chosen arbitrary from
, i.e., choices for ,
choices for , choices for ,and

choices for , thus

Theorem(2.3):
Every element, excepted identity element

, in the group has order
That is,  , we have

Proof 2:
If , then  . 

has the form

and are not all zero

 , 

In general,

Let m be the order of , then

We get ,

Since, is a field and , are not
all zero, then .

Theorem(2.4):
Exponent of the group is,

.

Proof 3:
Let be the least common

multiple of and  . 
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By theorem(2.3),
.

Theorem(2.5):
The center of the group is

the subgroup

and

Proof 4 :

Let , where

and

,

If , then , we have

Hence, and

Since, ,

and since we

have

and ,and since ,

,also we have p

choises for and  , then
+p= -p+p= .

Remark(2.6):
We classify the elements of the group

into four disjoint sets :

1) Let

we called set of all elements of kind ,
2) Let

we called set of all elements of kind
We note that

3) Let

we called set of all elements of kind
4) Let

we called set of all elements of kind
are

disjoint sets , i.e.,
5)  ,  ,Uz ,and

Proposition(2.7):
Let  , then

1) ; are elements of
kind  , that is,  . 

2) ; are elements of
kind  , that is, .
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Proof 5:

1 and

where qi then

;

2) and

Since, and then ,
therefore .

Theorem(2.8):
The group has exactly

conjugacy classes
1) ; We have classes of the

form , and

2) ;We have classes of the
form

And

3) and
; We have classes of the

form

and
4) and

; We have classes of the
form

and

Proof 6:
1),2) By theorem(2.5),

, ; the
elements , then these elements
form a conjugacy classes of their own , and

,

3) To find a conjugacy classes of , we
consider an arbitrary element

and its inverse

, Then

If ; and is
conjugate to  , then

and

Thus, and
; are all distinct . 

In , , then

4) To find a conjugacy classes of , we
consider an arbitrary element
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and its inverse

 ,Then

If and
is conjugate to  , then

 ,

and
Thus,

, and
; are all distinct

In , , then

To show that the conjugacy classes  , 
and ,are disjoint:
We have  , and

, then ,

,
, ,

Hence  ,  , and
are disjoint . 

To find the total number of the conjugacy
classes
Number of conjugacy classes in (1), (2)=
Number of conjugacy classes in (3) = p( )
Number of conjugacy classes in
(4) .
Then the total number of the conjugacy classes

=
To show that these are all conjugacy classes of

the group , we add up the
elements contained in those conjugacy classes,
we get

 Thus,
this theorem gives all conjugacy classes of the
group

Proposition(2.9):
Order of the centralizers, , of in

the group are :
1)
2)
3) and

;
4)

,and
;

Proof 7:
By lemma (1.11 ), and by

theorem(2.2),
1) By theorem(2.8),

, then

2) By theorem(2.8),
, then

3) By theorem(2.8), and
;  , 

    Then

4) By theorem(2.8), ,
and

;  , 

  Then

Proposition (2.10):
Let G=U(4, ) then we have the

following:-
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1) (p+1) cyclic subgroups of order p which
generated by elements of the classes of the
form

(p+1) cyclic subgroups of order p which
generated by elements of the classes of the
form

Proof 8:
1)By theorem(2.3),(2.8),all elements of the

conjugacy classes of the form have
order p(except the identity element),and
each class contains only one element which
is of the form then we have
elements of order p,since every cyclic
subgroup of order p contains p-1 elements
of order p ,then we have

cyclic subgroup of order p. Since every
cyclic subgroup of order p generated by
elements of the form Ux or Uy contains p-1
classes of the form ,then the
normalizer of these cyclic subgroups is
equal to .

2)By theorem(2.3),(2.8),since we have p(p-1)
classes of the form , p2(p-1) classes of
the form ,which each class contains p
elements ,then we have ) elements
of the form

= (p-1)( + )=
(p-1) (p+1) elements of order p of the

form or each cyclic subgroup of order
p contains p-1 elements of order p then

we have = (p+1) cyclic

subgroups of order p.
Since every cyclic subgroup of order p

which generated by element of the form or
fixed (by conjugation) only by elements

(which is form the centre of the group),
and ) elements of the form or
then the normalizer of these cyclic subgroups
is equal to

(1+p-1)= .

Theorem(2.11):
For any prime number p the Artin

exponent of the group is equal to

Proof 9:
According to the Brauer coefficients

theorem, we calculate Brauer s coefficients
using the formula in theorem (1.30)

]

(p+1) ]

(p+1)(-1)]

= -

]= +p+1]=

]=

]=

+

Artin exponent of U(4, )=p3.
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)n,f(Un=4f=Zp

p3

p3=A(U(4,Zp))p4

p4 =p

exp (U(4,Zp))=p
.p


