ARTIN EXPONENT OF $U\left(4, \mathbb{Z}_{p}\right)$ USING BRAUER COEFFICIENT THEOREM

Awss Jabbar Majeed

Abstract

In this paper, we consider the Artin exponent of the Groups of unitriangular matrices $U\left(n_{,} F\right)$ from the principal character of its cyclic subgroups and denoted by $A\left(U\left(n_{m} F\right)\right)$ where $n=4$, $F=\mathbb{Z}_{p}, \mathrm{p}$ is prime number, and we found that $A\left(U\left(4, \mathbb{Z}_{\vartheta}\right)\right)=p^{3}$.Furthermore, we found that, the order of this group $\left|U\left(4_{i} \mathbb{Z}_{p}\right)\right|=p^{4}$, its exponent, $\exp \left(U\left(4, \mathbb{Z}_{p}\right)\right)=p$ and found general forms of all conjugacy classes

Introduction

Let G be a finite group and let f be an integral valued class function on G, Artin induction theorem[6] states that $|G| f$ is an integral linear combination of characters of G induced from characters of principle representations of cyclic subgroups of G .

In (1968), Lam [6] proved a sharp form of Artins theorem, he determined the least positive integer $A(G)$ such that $A(G) X$ is an integral linear combination of induced principal characters of cyclic subgroups for all rational valued characters \mathcal{X} of G .

In this work, the group G under consideration is Groups of unitriangular matrices $U\left(n_{r} F\right)$, where $n=4$ and $F=\mathbb{Z}_{F}$, p is prime number, The main results will be stated in section 2, as follows : in theorem(2.8) we give the general forms of all conjugacy classes of G, Furthermore, we found the order of G and its exponent in theorem(2.3) and theorem(2.4) respectively.

1-Basic Concepts and Theorems

In this section we will introduce the basic notations and definitions for the later work.

Definition(1.1), [8]:

Let F be a field. Then the general linear group $G L\left(n_{s} F\right)$ is the group of all invertible $(\mathrm{n} \times \mathrm{n})$ matrices with entries in F under matrix multiplication.

Definition(1.2), [5]:

Let V be a vector space over any field F , $\mathrm{GL}(\mathrm{V})$ denotes the group of all linear isomorphism of V onto itself.

Definition(1.3), [1]:

A representation of a group G is a homomorphism T : G $\rightarrow \mathrm{GL}(\mathrm{V})$.

Definition(1.4), [1]:

A matrix representation of a group G is a homomorphism $\mathrm{T}: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{n}, \mathrm{F})$, where n is called the degree of the matrix representation.

Definition(1.5), [4]:

A representation $\mathrm{T}: G \rightarrow G L(1, \mathbb{C})$ such that $\mathrm{T}(\mathrm{x})=1, \forall x \in G$, it is called the linear representation or principle representation of G.

Definition(1.6), [2]:

A class function on a group G is a function $f: G \rightarrow \mathbb{C}$ which is constant on conjugacy classes ,that is, $f\left(x^{-1} y x\right)=f(y) \quad \forall x, y \in G$.
If all value of f are in \mathbb{Z}, then it is called \mathbb{Z} - valued class function.

Definition(1.7), [3]:

Let T be a matrix representation of a finite group G over a field F, the character χ of T is the mapping $X: G \rightarrow F$ defined by $\chi(g)=\operatorname{tr}(T(g)), \forall g \in G$, where $\operatorname{tr}(T(g))$ refers to the trace of the matrix $T(g)$.
Clearly, $x(1)=n$, which is called the degree of X,also character of degree 1 is called linear character.

Definition(1.8), [3]:

The function 1_{G} with constant value 1 on G, is a linear character, it is called the principle or unit character of G.

Lemma(1.9):
Characters of a group G are class functions on G. Proof:see[3].

Definition(1.10),[4]:

Let G be a finite group and let $\mathrm{H} \leq G$. Then the normalize of H in G :

$$
N_{E}(\mathrm{H})=\left\{x \in G \mid x H x^{-1}=H\right\}
$$

Lemma(1.11):

Let G be a finite group, and let $N \in G$. Then the number of elements in the conjugacy class of h is equal to the index $\left[G: C_{G}(h)\right]$ of the centralizer $C_{G}(h)$ of h in G.
Proof:see [7].

Lemma(1.12):

Let X be a rational valued character of G , then, for all $g \in G, \chi(g) \in \mathbb{Z}$.
Proof:see [3].

Lemma(1.13):

Let X be a rational valued character of G , and let $x, y \in G$ with $\langle x\rangle=\langle y\rangle$,
Then $\quad x(x)=x(y)$.
Proof:see[3].

Definition(1.14), [3]:

Let H be a subgroup of a group G and ψ be a class function of H , then $\psi \uparrow^{G}$, the induced class function on G is given by : $\psi f^{G}(g)=\frac{1}{|H|} \Sigma_{x \in C} \psi^{*}\left(x g x^{-1}\right)$
Where $\begin{cases}\psi^{\prime \prime}(h)=\psi(h) & \text { if } h \in H \\ \psi^{\prime \prime}(h)=0 & \text { if } h \notin H\end{cases}$
Clearly $\psi \uparrow^{G}$ is a class function on G and $\psi T^{G}(1)=[G: H] \&(1)$.
Another useful formula for computing $\psi^{6}(y)$ explicitly is to choose representatives $x_{1}, x_{2}, \ldots, x_{m}$ for the m classes of H contained in the conjugacy class C_{y} in G which is given by
$\psi^{G}(y)=\frac{\left|c_{G}(y)\right|}{\left|c_{H}\left(x_{y}\right)\right|} \sum_{i=1}^{m} \psi\left(x_{i}\right) \ldots .(1-1)$
Where $\psi^{\top}(y)=0$ if $H \cap C_{y}=\phi$. This formula is immediate from the definition of ψ^{G} since as x runs over $G, x y x^{-1}=x_{i}$ for exactly $\left|C_{G}(y)\right|$ values of x.

Proposition(1.15):

Let H be a subgroup of G , and ψ to be a character of H, then $\psi \uparrow^{e}$ is a character.

Definition(1.16), [6]:

The character induced from the unit character of a cyclic subgroups of G is called Artin character, and denoted by $\psi(x)$

Example(1.17):

The three conjugacy classes of the symmetric group S_{3} are
$C_{(1)}=(1), C_{(12)}=\{(12),(13),(23)\}$ and $C_{(123)}=\{(123),(132)\}$, We calculate the Artin characters (induced characters) of S_{3} from the unit characters of the cyclic subgroups $H_{i}, \mathrm{i}=1,2,3$ by using formula (1-1)
The orders of the three classes are $\left|C_{(11)}\right|=1,\left|C_{(12)}\right|=3,\left|C_{(123)}\right|=2$
and the orders of the centralizers are $\left|C_{S_{2}}(1)\right|=6,\left|C_{S_{z}}(12)\right|=2,\left|C_{S_{y}}(123)\right|=3$ Thus

1) $\quad\left(1^{3}\right) \quad: \quad 1_{H_{2}} \uparrow^{S_{3}}(1)=\frac{6}{1} \Sigma 1=6$,
$\mathbf{1}_{H_{4}} \uparrow^{S_{5}}(12)=0$ and $1_{H_{4}} \uparrow^{S_{5}}(123)=0$

$$
\psi_{1}(x)=\left(\begin{array}{lll}
6 & 0 & 0
\end{array}\right) \text { Since, } \quad \text { (1) } C_{(12)}
$$

and (1) $\in C_{(123)}$
 and $1_{R_{5}} T^{S_{s}}(123)=0$
$U_{2}(x)=\left(\begin{array}{lll}3 & 1 & 0\end{array}\right)$ Since, $\left.((12))\right\rangle \cap C_{(120)}=0$

and $1_{H_{z}} \uparrow^{5}(123)=\frac{3}{3} \Sigma 1+1=2$

$$
\psi_{3}(x)=\left(\begin{array}{lll}
2 & 0 & 2
\end{array}\right)
$$

Since, $\langle(123)\rangle \cap C_{(12)}=\emptyset$.
Table (1-1)
Artin characters of S_{3}.

C_{g}	$\left(1^{3}\right)$	$(\mathbf{1 2})$	$(\mathbf{1 2 3})$
$\left\|c_{g}\right\|$	1	3	2
$\left\|c_{S_{2}}(g)\right\|$	6	2	3
ψ_{1}	6	0	0
ψ_{2}	3	1	0
ψ_{3}	2	0	2

Definition(1.18), [6]:

The Artin exponent, $A(G)$, of a group G is the smallest positive integer $A(G)$ such that $A(G) \dot{\psi}$ is an integer linear combination of the induced principle characters of the cyclic subgroups of G, for all rational valued characters ψ of G.

Remark(1.19), [6]:

Let $H_{1}=\{1\}, H_{2}, \ldots, H_{q}$ be the full set of non-conjugate cyclic subgroups of G. We write $\boldsymbol{1}_{j}$, for the principle character on H_{j}, and denote the Artin character (induced character) on G by ψ_{j}, which is the character afforded by the rational representation of G and it is clearly depends only on the conjugacy class of the cyclic subgroup H_{j}.

Definition(1.20), [6]:

Let G be a finite group, an integer $m \in \mathbb{Z}$ is said to be an Artin exponent for G if, given any rational character χ on G such that $: m \chi=\sum_{k=1}^{Q} a_{k} \psi_{k}$ is solvable for integer unknowns $a_{k} \in \mathbb{Z}$ and for any given rational character X on G .

Remark(1.21), [6]:

All Artin exponents form an ideal in the integers and [G:1] is in this ideal We pick the (unique) positive generator $A(G)$ for this ideal and we shall call it the Artin exponent of G, $A(G)$ divides $|G|$.

Proposition(1.22):

Let 1_{G} denote the principal character of G and $d \in \mathbb{Z}$, then d is an Artin exponent of G if it has the following property:
There exist (unique) integers $a_{k} \in \mathbb{Z}$ such that $\boldsymbol{d} .1_{G}=\sum_{k=1}^{G} a_{k} \psi_{k}$
Where $\psi_{1}, \psi_{2}, \ldots, \psi_{q}$ are the Artin characters.
If, $a_{1}, a_{2}, \ldots, a_{\mathrm{q}}$ have no common factor, then $d=A(G)$ and conversely.
Proof : see[6].

Proposition(1.23):

Let G be an arbitrary finite group, and $H=\left\{H_{1}, H_{2}, \ldots, H_{q}\right\}$ be a full set of non -conjugate cyclic subgroups of G , then $A(G)$ is the smallest positive integer m such that:
$m .1_{G}=\Sigma_{H_{k} \equiv H} \quad a_{k} \cdot 1_{H_{k}} T^{G}$.
With each $a_{k} \in \mathbb{Z}$.
Proof:see[6].

Remark(1.24), [6]:

1) If m is a positive integer, and (1-2) holds for some set of integers $\left\{a_{k}\right\}$ with greatest common divisor $=1$, then necessarily $m=A(G)$.
2) Given a group G, We can compute the characters $\left\{\mathbf{1}_{\mathbf{H}_{\chi}} \uparrow^{G}\right\}$ explicitly, and then use proposition (1.22) to determine $A(G)$.

Theorem(1.25):

$A\left(G^{*}\right)=1$ iff G is cyclic.
Proof:see[6].

Remark(1.26), [6]:

$A\left(G^{\prime}\right)$ gives an interesting numerical measure of the deviation of G from being a cyclic group. The invariant $A(G)$ is, therefore, merely a measure of noncyclicity.

Example(1.27):

Consider $G=S_{3}$, Let $H=\left\{H_{1}, H_{2}, H_{3}\right\}$ with H_{i} cyclic subgroups of order ℓ.According to example(1.17) and its table, if we multiply ψ_{1} by $-1, \psi_{2}$ by 2 , and ψ_{3} by 1 ,
then we have:

$$
\begin{aligned}
& 2.1_{S_{3}}=-\left(1_{H_{2}} \uparrow^{S_{3}}\right)+2\left(1_{H_{2}} \uparrow^{S_{i}}\right)+\left(1_{H_{2}} \uparrow^{s_{3}}\right) \\
& \text { and therefore } A\left(S_{3}\right)=2 .
\end{aligned}
$$

Definition(1.28), [4]:

Let G be a group, then the exponent of G is the least common multiple of the orders of its elements, and denoted by $\exp (\mathrm{G})$

Definition(1.29):

$$
\text { For } n \in \mathbb{Z}^{+} \mu(n)=\left\{\begin{array}{l}
\text { If } \mathrm{n}=1 \\
\text { If } \mathrm{n} \text { is not square free } \\
\text { If } \mathrm{n}=\mathrm{p}_{1} . \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{r}} \text { where the } \mathrm{p}_{\mathrm{i}} \\
\text { are distinct primes. }
\end{array}\right.
$$

This function is called the Mobius function Then $\mu\left(n_{1} n_{2}\right)=\mu\left(n_{1}\right) \mu\left(n_{2}\right), L f\left(n_{1}, n_{2}\right)=1$.

Theorem(1.30): [Brauer Coefficient Theorem] For any finite group G

$$
\begin{aligned}
& \mathbf{1}=\sum_{j=1}^{Q} b_{j} \mathbf{1}_{c_{j}} \uparrow^{G}, \\
& b_{j}=\frac{1}{\left[N\left(c_{j}\right) c_{j}\right]} \sum_{c=c_{j}} \mu\left(\left[c_{;} c_{j}\right]\right)
\end{aligned}
$$

where

The summation being over all cyclic subgroups c of G over c_{j}.

2- Artin Exponent of $\boldsymbol{U}\left(4, \mathbb{Z}_{p}\right)$

This section concerns with some members of an important class of groups; the finite linear groups, groups of unitriangular matrices $U\left(n_{r} F\right)$, with $\mathrm{n}=4$ and $F=\mathbb{Z}_{p}, \mathrm{p}$ is prime number. After describing important features of groups and investigating their conjugacy classes we move on to evaluate its Artin Exponent.

Definition(2.1), [8]:

Let $U(n, F)=\left(\begin{array}{cccc}1 & * & \ldots & * \\ 0 & 1 & \ldots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$ be the group of $n \times n$ upper unitriangular matrices with entries in F under matrix multiplication, that is, $U\left(n_{,} F\right)$ consists of matrices such that $x_{i j}=0$ for all $i>j$ and $x_{i i}=1$ for all i.
$U\left(n_{F} F\right)$ is a subgroup of $G L\left(n_{s} F\right)$
In this work we interested in the group $U\left(4, \mathbb{Z}_{p}\right)=\left\{\left[\begin{array}{cccc}1 & g_{1} & g_{2} & g_{0} \\ 0 & 1 & g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] ; B_{1}, g_{2}, g_{3}, g_{4} \in \mathbb{Z}_{p}\right\}$,
where p is prime number.

Theorem(2.2):

The order of the group $U\left(\mathbb{4}, \mathbb{E}_{p}\right)$ is $\left|U\left(4, Z_{p}\right)\right|=p^{*}$

Proof 1:

$u\left(4, Z_{y}\right)=\left\{\left[\begin{array}{cccc}1 & g_{2} & g_{2} & g_{5} \\ 0 & 1 & g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], g_{1}, g_{2}, \varepsilon_{3}, g_{4} \in \mathbb{Z}_{p}\right\}$
Order of the group $U\left(\mathbb{4}, \mathbb{Z}_{p}\right)$ depending on choices number of g_{1}, g_{2}, g_{3}, anclg g_{4}.
g_{1}, g_{2}, g_{3}, and $_{4}$ can be chosen arbitrary from \mathbb{Z}_{p}, i.e., $\left|\mathbb{Z}_{p}\right|=p$ choices for g_{1},
p choices for g_{2}, p choices for g_{3}, and p choices for g_{4}, thus $\left|U\left(4, \mathbb{Z}_{p}\right)\right|=p \cdot p . p \cdot p=p^{4}$

Theorem(2.3):
Every element, excepted identity element e, in the group $G=U\left(4, \mathbb{Z}_{p}\right)$ has order p
That is, $\forall g \in G$, we have
$o(g)=\left\{\begin{array}{lll}1 & \text { if } & g=e \\ p & \text { if } & g \neq e\end{array}\right.$

Proof 2:

If $g=e$, then $o(g)=1$.
$\forall e \neq g \in G$ has the form
$g=\left[\begin{array}{cccc}1 & g_{2} & g_{2} & g_{3} \\ 0 & 1 & g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ where g_{1}, g_{2}, g_{3}, and $g_{4} \in \mathbb{Z}_{p}$
and g_{1}, g_{2}, g_{3}, and g_{4} are not all zero
$g^{3}=\left[\begin{array}{cccc}1 & 3 g_{1} & 3 g_{2}+3 g_{1} g_{4} & 3 g_{3} \\ 0 & 1 & 3 g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$g^{2}=\left[\begin{array}{cccc}1 & 2 g_{3} & 2 g_{2}+g_{1} g_{4} & 2 g_{3} \\ 0 & 1 & 2 g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,
In general,
$g^{r}=\left[\begin{array}{cccc}1 & \mathrm{rg} & \mathrm{r}\left(g_{2}+\frac{r-1}{2} g_{1} g_{4}\right) & \mathrm{r} g_{3} \\ 0 & 1 & \mathrm{rg} g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Let m be the order of g, then $g^{m}=e$
$=\left[\begin{array}{cccc}1 & m g_{1} & m\left(g_{2}+\frac{m-1}{2} g_{1} D_{4}\right) & m g_{3} \\ 0 & 1 & m g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
We get, $\quad \operatorname{mg}_{1} \equiv 0 \operatorname{modp}$
$m g_{2} \equiv 0 \operatorname{madp}$

$$
m g_{4} \equiv 0 \quad \bmod p
$$

$m\left(g_{2}+\frac{(m-1)}{2} g_{1} g_{4}\right) \equiv 0 \bmod \mathrm{~m}$
Since, \mathbb{Z}_{p} is a field and $g_{1}, g_{2 r} g_{3}, g_{4}$ are not all zero, then $m=p$.

Theorem(2.4):

Exponent of the group $G=U\left(4, Z_{p}\right)$ is,
$\exp (G)=p$.

Proof 3:

Let d. c.m($\left.a_{p} b\right)$ be the least common multiple of a and b.

By theorem(2.3),
$\exp (G)=l \cdot \operatorname{c.m}(1, p)=p$.

Theorem(2.5):

The center of the group $G=U\left(4, \mathbb{Z}_{p}\right)$ is the subgroup

$$
\left.\begin{array}{l}
Z(G)=\left\{\left[\begin{array}{llll}
1 & 0 & 0 & t \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right. \\
\left.\qquad \left.\cdot\left[\begin{array}{llll}
1 & 0 & j & k \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \right\rvert\, j \neq 0, i, j, k \in \mathbb{Z},\right\}
\end{array}\right\}
$$

Proof 4:

Let $g, h \in G$, where $g=\left[\begin{array}{cccc}1 & g_{1} & g_{2} & g_{3} \\ 0 & 1 & g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
and $h=\left[\begin{array}{cccc}1 & h_{1} & h_{2} & h_{5} \\ 0 & 1 & h_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$g \cdot h=\left[\begin{array}{cccc}1 & h_{1}+a_{1} & h_{2}+g_{1} h_{4}+a_{2} & h_{3}+\theta_{3} \\ 0 & 1 & h_{4}+g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,
$h . g=\left[\begin{array}{ccccc}1 & g_{1} & \| h_{1} & g_{2}\left\|h_{1} g_{4}\right\| h_{2} & g_{3} \| h_{3} \\ 0 & 1 & g_{4}+h_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
If $g_{1}=g_{4}=0$, then $\forall h \in G$, we have $g . h=h . g$
Hence, $g \in Z(G)$ and
$Z(G)=\left\{\begin{array}{cccc}1 & 0 & g_{2} & g_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,

$$
\left.\left.\left[\begin{array}{cccc}
1 & 0 & 0 & g_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \right\rvert\, g_{2} \neq 0, g_{2}, g_{3} \in z_{3 y}\right\}
$$

Since, $\forall g_{2}, g_{3} \in \mathbb{Z}_{2}$,
$g=\left[\begin{array}{cccc}1 & 0 & g_{2} & g_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \in Z(G)$ and since we
have
$(p-1)$ choises for g_{2} and p choises for g_{3} and $\left|\mathbb{Z}_{p}\right|=p$, and since $\forall g_{3} \in \mathbb{Z}_{p}$,
$g=\left[\begin{array}{cccc}1 & 0 & 0 & g_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \in Z(G)$, also we have p
choises for g_{3} and $\left|\mathbb{Z}_{p}\right|=p$, then
$|Z(G)|=(p-1) p+\mathrm{p}=p^{2}-\mathrm{p}+\mathrm{p}=p^{2}$.

Remark(2.6):

We classify the elements of the group $U\left(4, \mathbb{Z}_{p}\right)$ into four disjoint sets :

1) Let $U_{x}=\left\{\left.x_{i}=\left[\begin{array}{llll}1 & 0 & 0 & t \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \right\rvert\, i \in \mathbb{Z}_{p}\right\}$
we called U_{x} set of all elements of kind x,
2) Let

$$
U_{y y}=\left\{\left.y_{j}=\left[\begin{array}{llll}
1 & 0 & j & k \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \right\rvert\, j \neq 0_{i} j_{r} k \in \mathbb{Z}_{y}\right\}
$$

we called v_{y} set of all elements of kind y
We note that $U_{x}, U_{Y}=Z(G)$
3) Let
$U_{n}=\left\{\left.z_{m n}=\left|\begin{array}{cccc}1 & i & 0 & m \\ 0 & 1 & n & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right| \right\rvert\, n=0_{i} i_{n} m_{n} n \in Z_{y}\right\}$
we called U_{a} set of all elements of kind z
4) Let
$U_{v}=\left\{\left.w_{n, z}=\left[\begin{array}{llll}1 & r & s & t \\ 0 & 1 & u & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \right\rvert\, r+0_{i} r, s, t u \in \mathbb{E}_{y}\right\}$
we called U_{w} set of all elements of kind w $U_{x} \cap U_{w}=\varnothing U_{x} \cap U_{z}=\varnothing U_{x} \cap U_{y}=\emptyset$ are
disjoint sets, i.e.,
5) U_{x}, U_{y}, U_{z}, and
$U_{z} \cap U_{w}=\varnothing U_{y} \cap U_{z}=\varnothing$, and

Proposition(2.7):

Let $1 \leq q \leq p-1$, then

1) $\forall^{\prime} i=0,1, \ldots, p-\mathbb{1} ;\left(x_{i}\right)^{q}$ are elements of kind x, that is, $\left(x_{i}\right)^{q} \in U_{x}$.
2) $\forall j=1,2, \ldots, p-\mathbb{1} ;\left(y_{j}\right)^{q}$ are elements of kind y, that is, $\left(y_{j}\right)^{a} \in U_{y}$.

Proof 5:

1) $x_{i}=\left[\begin{array}{llll}1 & 0 & 0 & t \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ and
$\left(x_{i}\right)^{q}=\left[\begin{array}{llll}1 & 0 & 0 & q l \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ where qie \mathbb{Z}_{p} then
$\forall x_{i} \in U_{x} ;\left(x_{i}\right)^{a} \in U_{x}$
2) $y_{i}=\left[\begin{array}{llll}1 & 0 & j & k \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ and
$\left(y_{j}\right)^{q}=\left[\begin{array}{llll}1 & 0 & q j & q k \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ where $q, q k \in \mathbb{Z}_{p}$
Since, $q \neq 0$ and $j \neq 0$ then $q \neq 0$,
therefore $\left(y_{j}\right)^{a} \in U_{y}$.
Theorem(2.8):
The group $G=U\left(4, z_{y}\right)$ has exactly
$\left(p^{3}+p^{2}-p\right)$ conjugacy classes
3) $\forall i=a_{r} 1_{v, \ldots} p-1$; We have classes of the
form $C_{x_{i}}=x_{i}=\left[\begin{array}{llll}1 & 0 & 0 & i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, and
$\left|c_{x_{1}}\right|=1$
4) $\forall j 1,2, \ldots, p-1$; We have classes of the form
$c_{y_{j}}=\left\{y_{j}=\left[\begin{array}{llll}1 & 0 & j & k \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] ; r=0,1_{z}, \ldots p-1\right\}$
And $\left|c_{y_{j}}\right|=1$
5) $\forall n=1,2, \ldots, p-1$ and
$\forall m=0,1, \ldots, p-1$; We have classes of the form
$C_{z_{m, n}}=\left\{z_{m, n}=\left[\begin{array}{cccc}1 & l & 0 & m \\ 0 & 1 & n & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], i=0,1, \ldots, p-1\right\}$
and $\left|C_{x_{m n}}\right|=p$
6) $v \mathrm{v}=1,2, \ldots, p-1$ and
$\forall t=0,1, \ldots, p-1$; We have classes of the
form
$g=\left[\begin{array}{cccc}1 & g_{1} & g_{2} & g_{3} \\ 0 & 1 & g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \in G$ and its inverse
$g^{-1}=\left[\begin{array}{cccc}1 & -g_{1} & g_{1} g_{4}-g_{2} & -g_{8} \\ 0 & 1 & -g_{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, Then
$g \cdot w_{F} s_{s} \cdot G^{-2}=\left[\begin{array}{cccc}1 & r & g_{1} g_{4}-\left(r+g_{1}\right) g_{4}+s+g_{1}-u & t \\ a & 1 & v_{1} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
If $r_{1} \neq r_{2}, t_{1} \neq t_{2}$, andlu $_{1} \neq u_{2}$ and $z_{r 1, t 1, u 1}$ is conjugate to $z_{r 2, z 2, \mu 2}$, then
$g \cdot w_{r 1, z 1, u 1} \cdot g^{-1}=w_{r 2, t 2, u 2}$
$=\left[\begin{array}{ccccc}1 & r_{1} & g_{2} g_{4}-\left(r_{1}+a_{2}\right) s_{4}+s+g_{2} \cdot x_{2} & t_{2} \\ 0 & 1 & u_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 & \\ 0 & 0 & 0 & 1 & \end{array}\right]$
$=\left[\begin{array}{cccc}1 & r_{2} & s & t_{z} \\ 0 & 1 & u_{2} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \Rightarrow r_{1}=r_{z}, t_{1}=t_{2}$
and $u_{1}=u_{2}$
Thus, $\forall r=1,2, \ldots, p-1$
$\forall t=0,12, \ldots, p-1$, and
$\forall u=0,1, \ldots, p-1 ; C_{w_{v i t u}}$ are all distinct
In $C_{w_{r, t u}}, s=0,1_{s} \ldots, p-1$, then
$\left|c_{w_{v_{r, t}}}\right|=p$
To show that the conjugacy classes $C_{w_{8}}, C_{y_{j}}$ and $C_{z_{m a}}$ and $C_{w_{r, t a m}}$, , disjoint:
We have $C_{x_{1}} \subseteq U_{x}, c_{y_{j}} \subseteq U_{y}$ and
$\mathcal{C}_{x_{m, n}} \subseteq U_{x}$, then $C_{x_{i}} \cap C_{Y_{i}}=\emptyset$,
$C_{x_{i}} \cap C_{r_{m n}}=\varnothing$
$c_{x_{i}} \cap c_{w_{w_{t, t i x}}}=6$,
$c_{y_{j}} \cap c_{z_{m, n}}=\varnothing, c_{y_{j}} \cap c_{w_{i, i}, u}=\emptyset$,
$C_{z_{m, n}} \cap C_{w_{r} t / u}=\emptyset$ Hence $C_{x_{i}}, C_{y_{j}}, C_{z_{m, n}}$ and
$C_{w_{v_{r, t a}}}$ are disjoint.
To find the total number of the conjugacy
classes
Number of conjugacy classes in (1), (2)= p^{2}
Number of conjugacy classes in (3) $=\mathrm{p}(p-1)$
Number of conjugacy classes in
$(4)=p^{2}(p-1)$.
Then the total number of the conjugacy classes
$=p^{2}+p(p-1)+p^{2}(p-1)-p^{2}+p^{2}-p+p^{3}-p^{2}-p^{3}+p^{2}-p$
To show that these are all conjugacy classes of
the group $G=U\left(4, \mathbb{Z}_{p}\right)$, we add up the
elements contained in those conjugacy classes, we get
$p^{2}(1)+[p(p-1)](p)+\left[p^{2}(p-1)\right][p]=p^{4}=|\theta|$ Thus, this theorem gives all conjugacy classes of the group $U\left(3, \mathbb{Z}_{p}\right)$

Proposition(2.9):

Order of the centralizers, $\left|C_{G}(g)\right|$, of g in the group $G=U\left(4_{z} \mathbb{Z}_{p}\right)$ are :

1) $\forall i=0,1, \ldots, p-1_{i} \quad\left|C_{G}\left(x_{i}\right)\right|=p^{4}$
2) $\forall j=1,2, \ldots, p-1 ; \quad\left|C_{G}\left(y_{j}\right)\right|=p^{4}$
3) ที $n=1,2, \ldots, p-1$ and
$\forall m=0,1, \ldots, p-1 ;\left|c_{G}\left(z_{m n}\right)\right|=p^{2}$
4)

$\forall r=1,2, \ldots, p-1, t=0,1,2, \ldots, p-1$, and $\forall m=0,1, \ldots, p-1 ;\left|C_{\epsilon}\left(z_{m, n}\right)\right|=p^{3}$

Proof 7:

By lemma (1.11), $\left|C_{C}(g)\right|=\frac{|G|}{\left|\mathbf{c}_{G}\right|}$ and by theorem(2.2), $|G|=p^{4}$

1) By theorem(2.8),
$\forall i=0,1, \ldots, p-1 ; \quad\left|C_{x_{j}}\right|=1$, then
$\left|C_{C}\left(x_{i}\right)\right|=\frac{|\epsilon|}{\left|\kappa_{w_{i}}\right|}=\frac{\bar{y}^{4}}{1}=p^{4}$
2) By theorem(2.8),
$\forall j=1_{z}, \ldots, p-1_{j} \quad\left|c_{y_{j}}\right|=1$, then
$\left|c_{G}\left(y_{j}\right)\right|=\frac{|c|}{\left|c_{y_{j}}\right|}=\frac{q^{4}}{1}=p^{4}$
3) By theorem(2.8), $\forall n=1_{r} 2, \ldots, p-1$ and
$\forall m=0,1_{s} \ldots, p-1 ;\left|C_{s_{m, n}}\right|=p$,
Then $\left|c_{6}\left(z_{m, n}\right)\right|=\frac{|\varepsilon|}{\left|c_{m_{m, n}}\right|}=\frac{q^{4}}{p}=p^{3}$
4) By theorem(2.8), $\vee r=1,2, \ldots, p-1$,
$\forall t=0,1,2, \ldots, p-1$ and
$\forall u=0,1, \ldots, p-1 ;\left|C_{w_{r, t a}}\right|=p$,
Then $\left|c_{G}\left(w_{r_{T, t}, u}\right)\right|=\frac{|G|}{\left|G_{w_{r, t, u}}\right|}=\frac{z^{4}}{w}=p^{3}$

Proposition (2.10):

Let $\mathrm{G}=\mathrm{U}\left(4, \boldsymbol{Z}_{\ddot{Y}}\right)$ then we have the following:-

1) $(p+1)$ cyclic subgroups of order p which generated by elements of the classes of the form $C_{x,} C_{y_{j}}$ with normalizer equal to p^{*} $p^{2}(p+1)$ cyclic subgroups of order p which generated by elements of the classes of the form
$C_{r_{m, n}} C_{w_{w_{n}, 4}}$ with normaltzer equal to p^{3}

Proof 8:

1)By theorem(2.3),(2.8), all elements of the conjugacy classes of the form $C_{x_{i}} C_{y_{j}}$ have order p (except the identity element), and each class contains only one element which is of the form $U_{s x}, U_{y}$ then we have $p^{2}-1$ elements of order p,since every cyclic subgroup of order p contains $p-1$ elements of order p,then we have $\frac{z^{3}-1}{p-1}=p+1$ cyclic subgroup of order p. Since every cyclic subgroup of order p generated by elements of the form U_{x} or U_{y} contains $\mathrm{p}-1$ classes of the form $C_{n_{i}}$ or $C_{y_{j}}$, then the normalizer of these cyclic subgroups is equal to p^{4}.
2)By theorem(2.3),(2.8), since we have $p(p-1)$ classes of the form $C_{Z_{m n}}, \mathrm{p}^{2}(\mathrm{p}-1)$ classes of the form $C_{w_{r t a i m}}$,which each class contains p elements ,then we have $p^{2}(p-1)$ elements of the form
$U_{a} p^{3}(p-1)$ elemmits of the fom V_{N},
the we hatep $(p-1)+p^{2}(p-1)=(p-1)\left(p^{2}+p^{2}\right)=$ $(p-1) p^{2}(p+1)$ elements of order p of the form U_{z} or U_{w} each cyclic subgroup of order p contains $p-1$ elements of order p then we have $\frac{(p-1) p^{2}(p+1)}{(p-1)}=p^{2}(p+1) \quad$ cyclic subgroups of order p .
Since every cyclic subgroup of order p which generated by element of the form U_{z} or U_{w} fixed (by conjugation) only by p^{2} elements (which is form the centre of the group), and $p^{2}(p-1)$ elements of the form U_{s} or U_{w} then the normalizer of these cyclic subgroups is equal to $p^{2}+p^{2}(p-1)=$ $p^{2}(1+p-1)=p^{3}$.

Theorem(2.11):

For any prime number p the Artin exponent of the group $U\left(4, \mathbb{Z}_{\gamma}\right)$ is equal to p^{a}

Proof 9:

According to the Brauer coefficients theorem, we calculate Brauer's coefficients using the formula in theorem (1.30)
$b_{1}=\frac{1}{\frac{\bar{p}^{4}}{4}}[1+\Sigma \mu[c ; 1]]$
$E_{1}=\frac{\frac{1}{p^{4}}}{\frac{p^{4}}{1}}\left[1+(p+1) \mu\left(\frac{p_{1}}{1}\right)+p^{2}(\mathrm{p}+1) \mu\left(\frac{3}{1}\right)\right]$
$B_{1}=\frac{\frac{\pi}{p^{4}}}{\frac{p^{4}}{a}}\left[1+(p+1)(-1)+p^{2}(\mathrm{p}+1)(-1)\right]$
$=\frac{\frac{1}{9^{4}}}{}\left[1-p-1-p^{3}\right.$
$\left.p^{2}\right]=\frac{-p}{p^{4}}\left[p^{2}+\mathrm{p}+1\right]=\frac{-1}{p^{2}}\left[p^{2}+p+1\right]$
$b_{2}=\frac{1}{\frac{p^{4}}{p}}\left[\mu\left(\frac{2}{p}\right)\right]=\frac{1}{p^{z}}$
$B_{3}=\frac{1}{\frac{p^{2}}{F}}\left[\mu\left(\frac{z^{2}}{p}\right)\right]=\frac{1}{p^{2}}$
$\rightarrow \chi_{1}=\frac{1}{p^{2}} \emptyset_{3}+\frac{1}{p^{2}} \sigma_{2}-\frac{1}{p^{2}}\left(p^{2}+p+1\right) \varnothing_{1}$
\therefore Artin exponent of $U\left(4, \mathbb{Z}_{p}\right)=\mathrm{p}^{3}$.

References

[1] Burrow ,M. "Representation Theory of Finite Group", Academic Press, New York, 1965.
[2] Feit, W. "Characters of Finite Groups", W.A.Benjan, Inc, New York, 1967.
[3] Isaacs,I.M. " Character Theory of Finite Groups", Academic Press, New York, 1976.
[4] J.L.Alperin with Rowen B.Bell, "Groups and Representations", Spring-Verlag, New York, Inc, 1995.
[5] Keown, R. "An Introduction To Group Representation Theory ", Academic Press, New York, 1976.
[6] Lam, T. "Artin Exponent of Finite Groups", Colombia University, New York, Journal of Algebra, Vol.9, 1968,pp.94-119.
[7] Surowski, D. "Workbook in Higher Algebra", Department of Mathematics, Kansas State University, Manhattan, USA.
[8] Vavilov, Nikolai, "Linear Groups Over Rings", 2008.

الغرض الرئيسي لهذا البحث هو تحديد أس أرتن لزمرة
المصفوفات المنلثية الاحادية U(n,f) عنـــما n=4 و
وقد وجدت بأن أس أرنت لهذه الزمرة مساويا الـــى pº أي

ان
exp $\left(\mathrm{U}\left(4, \mathrm{Z}_{\mathrm{p}}\right)\right)=\mathrm{p}$ صفوف التر افق للزمرة اعلاه وبشكل عام لكل p.

