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ARTIN EXPONENT OF #(4,Z,) USING BRAUER
COEFFICIENT THEOREM

Awss Jabbar M ajeed

Abstract

In this paper, we consider the Artin exponent of the Groups of unitriangular matrices U(n, F}
from the principal character of its cyclic subgroups and denoted by A(t/(n,F)) where n=4 |,

F =T, ,pisprime number, and we found that 4 [u[c},zp}) = p*.Furthermore, we found that, the

order of this group |U(4,Z, )| = p* , its exponent, exp ( U(4,Z,)) = p and found general forms of

all conjugacy classes

Introduction

Let G be a finite group and let f be an
integral valued class function on G, Artin
induction theorem[6] states that [Glf is an

integral linear combination of characters of G
induced from characters of principle
representations of cyclic subgroups of G.

In (1968), Lam [6] proved a sharp form of
Artins theorem, he determined the least
positive integer A(G such that A(&)yx is an
integral  linear combination of induced
principal characters of cyclic subgroups for all
rational valued characters x of G.

In this work, the group G under
consideration is Groups of unitriangular
matrices Li{n, F), wheren = 4and F = E, P

is prime number, The main results will be
gtated in section 2, as follows : in theorem(2.8)
we give the general forms of all conjugacy
classes of G, Furthermore, we found the order
of G and its exponent in theorem(2.3) and
theorem(2.4) respectively.

1-Basic Conceptsand Theorems
In this section we will introduce the basic
notations and definitions for the later work.

Definition(1.1), [8]:

Let F be a fidd. Then the general linear
group GL(n.F) is the group of al invertible
(n x n) matrices with entries in F under matrix
multiplication .

Definition(1.2), [5]:

Let V be a vector space over any field F,
GL(V) denotes the group of dl linear
isomorphism of V onto itsdlf.
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Definition(1.3), [1]:
A representation of a group G is a
homomorphism T : G —GL(V).

Definition(1.4), [1]:

A matrix representation of a group G is a
homomorphism T : G —GL(n,F), where n is
called the degree of the matrix representation.

Definition(1.5), [4]:
A representation T : & — GL(1.T) such

that T(x)=1 , ¥ x €&, it is caled the linear
representation or principle representation of G.

Definition(1.6), [2]:
A class function

on a goup G is a
function f:G — C which is constant on
conjugacy classes ,that is,
fFxTyx)=f(y) Yxy€G .

If al value of f are in E | thenit iscalled
Z — valued class function.

Definition(1.7), [3]:

Let T be a matrix representation of a finite
group G over afidd F, thecharacter x of T
is the mapping ¥:G—F  defined by
x(g)=tr(T(g)) ¥ge6,wheretr(T(g))
refers to the trace of the matrix T(g) .

Clearly, x(1) =n, which is called the degree
of y ,aso character of degree 1 is called linear
character.

Definition(1.8), [3]:
The function 1¢ with constant value 1 on
G, isalinear character, it is called the principle

or unit character of G.




Lemma(1.9):
Characters of agroup G are class functions

on G. Proof:se€[3].

Definition(1.10).[4]:
Lee G be a finite group and
H < &.Then the normalizeof Hin G :

Ne(H)=fx € GlxHx"" = H}.
Lemma(1.11):
Let G be a finite group, and let h € G.

Then the number of elements in the conjugacy
classof h isequal to the index [G: €z (h]] of

the centralizer Co (k) of h in G.
Proof:see[7].
Lemma(1.12):

Let ¥ bearationa valued character of G,
then, foral g €G , ¥(g)E E.
Proof:see [3].
Lemma(1.13):

Let ¥ bearationa valued character of G,
and let x,v € Gwith {x} = {v},
Then x(x)= x(¥).
Proof:se€3].
Definition(1.14), [3]:

Let H be asubgroup of agroup G and 1 be
a class function of H, then 1 T<, the induced
class function on G is given by
WT€(g) = o Zec¥ (xgx ™)
Where {u’! ;th =y(h) if hEH

wih)=0 ifhgH

Clearly 1 T¢ is a class function on G and
¥ 1€ (1) = [6: Hlw(1) .

let

Another useful formula for computing
W T (y) explicity is to  choose
representatives xy,%,, ... %, for the m

classes of H contained in the conjugacy class
C, inGwhichisgivenby

W% () = (E T p(x,) o (1-])
Where ¢ 1€ (y) =0 if Bnc. =9 . This

formula is immediate from the definition of
W T8 dnceas x runsover G, xyx™!=x,

for exactly |C.(¥)| vauesof x.
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Proposition(1.15):
Let H be a subgroup of G, and i to be a

character of H, then i T¢ isacharacter.

Definition(1.16), [6]:

The character induced from the unit
character of a cyclic subgroups of G is called
Artin character, and denoted by (]

Example(1.17):

The three conjugacy classes of
symmetric group 5; are
Copy = (1) , €y ={(122.(13).(23)] and
Cromy = {(123),(132); , We cdculate the

Artin characters (induced characters) of &,

from the unit characters of the cyclic
subgroups H. , i=1,2,3 by using formula (1-1)

the

The orders of the three classes are
|E-11}|= L, [Cramy| = 3. C-1123}| =z
and the orders of the centraizers are

e (D] =6, e, (12)| = 2, |c;, (123)] = 3
Thus
n @ 1y, 1% (D)= %E 1=6,
1; ™ (12)=0 and 1, T (123)=0

A Y= 0 0) Since, (1) € Coaay
and (1) & Crizmy
2121, T (1) =231=3 , 1, ™ (13)=1
and 1y T% (123)=10

Wa(x)=1(3 1 0JSince{(12))n Cryqy = @
i7ak 1, (N=2T1=2 1, 1 (17)=0
and 1, ™% (123)=3X1+1=2

Yy(x)=(2 0 2)
Since, {(123))n €y = 0.

Table (1-1)
Artin characters of S.

Cs (1*) | (12) | (123)

1S, ] . 3 2
|C35_ (2] | 6 2 3

Wy 6 0 0

L 3 1 0

w:—l 2 0 2
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Definition(1.18), [6]:
The Artin exponent, 4(G), of agroup G is

the smallest positive integer A(&7 such that
A(Gy isaninteger linear combination of the

induced principle characters of the cyclic
subgroups of G, for al rationa vaued
characters # of G.

Remark(1.19), [6]:
Let H, = {1}, H,,....,H, bethefull set of

non-conjugate cyclic subgroups of G. We
write 1, for the principle character on H, and

denote the Artin character (induced character)
on G by W which is the character afforded

by the rational representation of G and it is
clearly depends only on the conjugacy class of
the cyclic subgroup H;.

Definition(1.20), [6]:
Let G be afinite group, an integer m €

is said to be an Artin exponent for G if, given
any rationa character y on G such that
my = o a1, is solvable for integer
unknowns oi,, € £ and for any given rational
character ¥ onG.

Remark(1.21), [6]:

All Artin exponents form an ideal in the
integers and [G:1] is in this idea We pick the
(unique) positive generator A( G for this ideal
and we shall call it the Artin exponent of &,
A(G) divides |G].

Proposition(1.22):
Let 1 denote the principal character of G

and d € &, then d is an Artin exponent of G
if it has the following property:

There exist (unique) integers o, £
that d.1z = Xg_; a,is

Where iy, 10, , ... A, are the Artin characters.

If, ay. @y, ... ,@, have no common factor, then
d = A(G) and conversdly.

Proof : see[6].

Proposition(1.23):

Let G be an abitrary finite group,
and H = {Hy, H,, ..., H_ ] beafull set of non
-conjugate cyclic subgroups of G, then A(G is
the smallest positive integer m such that:

-

&

such
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m. 1, = EH#H ty, .1HF¢" L
Witheach a, € E.
Proof:se€[6].
Remark(1.24) [6]:

1) If m isapositive integer , and (1-2) holds
for some set of integers {a,} with greatest
common divisor =1, then necessarily
m = A(G).

2) Given a group G, We can compute the
characters {1,,_T¢] explicitly, and then use
proposition (1.22) to determine A(G).

Theorem(1.25):

A(E1=1 iff G iscyclic.

Proof:se€[6].

Remark(1.26), [6]:

A(6] gives an interesting numerica
measure of the deviation of G from being a
cyclic group. The invariant A(G) is, therefore,
merely a measure of noncyclicity.
Example(1.27):

Consider G =155 , Let H={H,, H, Hy}
with H; cyclic subgroups of order i.According
to example(1.17) and its table, if we multiply
Wy by-1,4; by2,andys byl
then we have :
2.1, =—(1y TH)+2(1, T5%) + (1, T%)
and therefore  A(S;) = Z.
Definition(1.28), [4]:

Let G be agroup, then the exponent of Gis

the least common multiple of the orders of its
elements, and denoted by exp(G)

Definition(1.29):

If n=1

If nis not square free

EY uln) =

For n€ L”.u(n) If N=py.ps...pr Wherethe p;
are distinct primes.

This function is caled the Mobius function
Then u(nyn.) = ulngdu(n.). if (ny.ns) = 1.

Theorem(1.30): [Brauer Coefficient Theorem]
For any finite group G



1=37_,b 1. 15, where
1
by = ogeg Be=e; #lle gl
The summation being over al cyclic

subgroups c of G over ;.

2- Artin Exponent of ©(4.Z,)

This section concerns with some members
of an important class of groups, the finite
linear groups, groups of unitriangular matrices
U(n.F), with n=4 and F=E,, p is prime
number. After describing important features of
groups and investigating their conjugacy
classes we move on to evaluate its Artin
Exponent.

Definition(2.1), [8]:

1 = *
Let v(mF)=[9 1 "] be the
o o 1

group of 1 X 1 upper unitriangular

matrices with entries in F under matrix
multiplication, that is, U{n,F) conssts of
matrices such that x; =0 for dl i =j and
x; =1 foral i.

U(n,F)isasubgroup of GL(n,F)

In this work we interested in the group

[ } 1 g1 9 Zz
U(s,Z 1 g, © s
B 0 0 14 ol By By fd: €5,
o1

o 0
where p is prime number.
Theorem(2.2):
The order of the group U(4,Z,} is
U(4.Z,)| =p*
Proof 1.
(|1 g, g &5
ulsz,)=}[0 1 4 O e €
(+.2,) { 0o o 1 olreveress ez,
lo o 0 1

Order of the group U(4,Z,} depending on
choices number of gy, g5.85.andg. .

G1. 92, 85, and g.can be chosen arbitrary from
E, ie, |Z,| = p choicesfor gy,

p choices forgs,
choices for

p choices for gg,andp
s , thus
lu(4.2,)| = p.p.0.p = p*

l.
J
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Theorem(2.3):
Every element, excepted identity element
e, inthegroup 6 = U(4,Z, ) has order p
That is, ¥ g € & , we have
. 1 if g=e
o(g) = {

p if g=e
Proof 2:
If g=e thenolg)=1.
¥ e # g € G hastheform

1 8. 8 8
=12 1 &8 0| 2o i
5=l o 1 o where gy, gy, g5, 0ndg, €
0 a @ 1
and gy, @,. g5, and g.arenot al zero
(1 3g; 39, +3g:8: 38
s_|0 1 39, 0
g [ 0 1 0
[ 0 1
1 2g; 28T 018: 28
_|0 1 29, 0
g a o 1 o\’
a O ] 1
In general,
r—1
1 rg; v(g: TS 8:8:) 195
gr = 0 l rg4 0
0 0 1 0
0 0 ) 1
Let m be the order ofg then g™ =e
1 mg, wmg, +—9:z?4) gy 100
o |3 xE
0 0 00 0 1
0 4]
We get , mgy =0 modp
mgy =0 modp
mgy, =0 modp
(m=-12 -
m{fa"z + g1§4) =0 modp
Since, Z, isafiddand gy.9,.8;, g. aenot
al zero, then m = p.
Theorem(2.4):

Exponent of the group 6 = U(4,Z, ) is,
exp(G) = p.

Proof 3:
Let I e.m(a, b) bethe least common

multipleof mand b .
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By theorem(2.3),
explG) =l.c.om(1,p) = p.

Theorem(2.5):
The center of the group 6 = U(4,Z,) is
the subgroup

1 0 0 i
—_ o 1 0 0
z(6)= 0 0 1 0
1w o 0 1
1 0 j k
01 0 af- .
o o0 1 @ F#0,4,j, k€ Z,
0 0 0 1
and |Z(G)| = p?
Proof 4 :
1 81 92 @
0 1 g, 0
B EG = 4
Let g , Where g 0O 0 1 0
0 0 0 1
1 hy hy hg
and h = 01 A, O
o 0 1 o
o 0 0 1
T hy+gy b+ gihst g by + g,
g_h = |0 1 I-[‘g +H4 0 s
0 ] 1 0
0 1] a 1
1 gl by g liygg 1 by 31 i
hg = a 1 gs + ks a
a 0 1 a
a 0 a 1
If g =g.=0 ,then ¥he G, wehave
g-h=hg
Hence, g € Z(G) and
1 O & gy
_Jjo 1 0 0
2(6) = o0 1 0|
L ] 0 1
1 0 0 gy
a 1 0 o
' 0O o 1 O gi‘ F DJHZ‘!EE = zﬁl
o o0 01
Since, ¥ g, g5 € I,
1 0 g, =
_J10 1 O 1] .
o= 00 1 o0 € Z(6) and sincewe
o 0 a 1
have

(p — L)choises for g, and p cheises for g4
and |Z,| = p,and sincev g, € Z,
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1 & 0 g,
_|0 1 0 O

9=|p o 1 ol EZE) ,also we have p
0 o 0o 1

choises for gzand |Z,| = p , then
1Z(G)| = (p — 1)p +p=p>-p+p=p>.
Remark(2.6):

We classify the elements of
U(4.Z, ) into four disjoint sets:

10 0 ¢
x=|2 10 D]|iEZ,P

the group

1) Let U, =

! 0 0 1 0
0 0o 0 1
we called U7 set of all elements of kind z,

2)Let

1 0 j k
_boo o1 o ofjiLn
U,=1%=|g o 1 o|li®0ikEL,
o oo 1

we calléd U, set of all elements of kind w
Wenotethat U, U, = Z(G)

3) Let
r 11 0 m
II 1T w 7
Va=1Zwn=|g ¢ 1 g |n=0: imneg, j
l\. o oo

we called U, set of all elements of kind z

4) Let

‘ 1 5 I
a - 1]

u,. = { = [0 t{ 0] | r£Q; st uw E Eg}
- g 0 0 1

we called 7, set of al elements of kind w

U NU . =0U.nlU,=0U_nU,=@are

disoint sets, i.e.,

54U, u, U, ,ad

g.nv, =eU, nU, =@ and

= 4

Wt

Proposition(2.7):
Let1=g=p—1,then
Dwi=0.1,...p —1; (x,)? are elements of
kind x , that is, (x;19 € U, .
AQ¥ji=12,...p—1; [_y}.jq are e ements of
kind ¥, that is, [:}:J_:]‘f = U:'




Proof 5
1 0 0 1
_(0 1 0 0O
DES 0 0 1 0 and
0 0 0 1
1 0 0 gqi
(x,)= g 3 [1 g where gie Z, then
o 0 o 1
W, €U, (x,]T EU,
1 0 j k
10 1 0 @
2%=lo o 1 ol
o 0 0 1
1 0 gqf gk
[:}I_J-j‘f = g 3 01 3 where qf.qk € Ep
00 o 1

Since, g = 0and j = 0then qf =0
therefore (y;)% € U,..
Theorem(2.8):

The group 6 = U(4,Z,) has exactly
(p* +p* - p) conjugacy classes
D)¥i=a.1,..,p—1;Wehaveclasses of the

1 0 0 i
form €, = x, = 3 é 2 g , and
00 0 1
ool = 1

2) ¥ j1.2,...,p — 1;We have classes of the
form

10/ k
_J.o_le 10 of _ _ .
%=V5%lo o 1 ofi"=0Lp-1
, 0 0 0 1
And |E =1

Y¥n=12...p—1 and
wam =01, ..,p— 1; Wehave classes of the
form

1 1 0 m \}
] 0

CH-‘I‘L."\= z?’.“b?’ﬂ= g é T; 0 F3=041a---;}"’—1 ..
a0 0 1

and |C3m.'1| =p

H¥r=12..,p—1 and
wt=10.1,...,p—1; Wehaveclassesof the
form

1
)
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r i r = }
o1 u 0 1 ;
C‘b‘-'r_r_u = {“"P’"u = 0O 0 fil ﬂ‘ U= GJ-J INY S 1 j
- o 0 0 1 -

Proof 6:

1),2) By theorem(2.5),
wi=201,..,p—1,j=1,..,p—1;the
elements x;,y; € Z(G), then these elements
form a conjugacy classes of their own, and

el =16, =1

3) To find a conjugacy classesof z,,,, , we
consider an arbitrary element

1 g, & 8Os
' Q
9=1% 0 ‘1 0| €€
o o 0 1
anditsinverse g™t =
1 —gy &8s~ 02 —8s
0 1 -4 0
0 0 10 , Then
o 0 0 1
1 1 gy —U+pdg+oen m
Q Q o1

If my = my,ny = ny;and 24,4 IS
conjugate to z,..5 ..» , then

-1 _
g'zml,n:l.'g - zmi‘,n:

1 1 gy —I+g)p t oy my
= |01 My 0l
a0 1 0
a0 o 1
1 1 0 my
01 m 0] my; =, and n; = n,
o0 1 0 - -
a 0 o 1
Thus, Yyn=12,..p—1 and
¥Ym=01 ..,p-1; C.__ aeadldigtnct.

InC. ,1=01,..,p—1,then
iy it

|Copnl =P
4) To find a conjugacy classes of wr,..., , we
consider an arbitrary element
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1 g & 8
0 1 & 0 ~ o
9=10 o 1 ol|€6C and itsinverse
o 0 01
1 —g, £:18:78: ~8;
4_(0 1 —8s 0
g 0 0 1 0 ,Then
a 0 1
1 r 9.8~ +gdg. +s+g.u ¢
1|0 1 u 0
FWerard " Tlg g 1 0
e 0 o1

If vy #m,ty #Fty,anduy #u, and Z4,4 .4

;;;;;;

-1 _—
G Weirini-8 & = Wez sz
11y g8—(mtedsgststg §
— |0 1 Ty o
a0 10
a0 D1
1 ¥ 5ty
=0 1 B=>r='r t, =t
0o 0 1 0 1i i B 2
o 0 0 1
and u,= u,
Thus, ¥ r=1,2,..,p—1
¥t=012..,p—1,and
Yu=01...p—-1; €, areadldistinct
In E:Wr_r_u , 5=01,...,p—1,then
|C"'"r_t_a| =p
To show that the conjugacy classes C., , C:»'_.—-
and menand Cory € digoint:
We have C, S U, C‘\_J__ cu, ad
Copn S U=, then €, NC, =0,
€, neC.,, =0
Cxi n C""'."_r_u = !
C}.J__ i sz_n = @,C}.“; n Cw."_c,n =@,
CRm,n n C,','.ml = @ Hence Ce, C}.J__ ,sz_nand
Cy, ., aredigoint .

To find the total number of the conjugacy
classes

Number of conjugacy classesin (1), (2)= g~
Number of conjugacy classesin (3) = p(p — 1)
Number of conjugacy classesin

@=p*(p— 1.

Then the total number of the conjugacy classes
Spitplp—1)+ple—1) —p'tpt —p+p® et — i+t —p
To show that these are all conjugacy classes of
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the group 6 = U(4, Z,, ), we add up the

elements contained in those conjugacy classes,
we get
P U+ el —(p) + b — DlE) =p* =161 Thyg,

this theorem gives all conjugacy classes of the
group U(3,Z,)

Proposition(2.9):
Order of the centralizers, |C.(g)l, of gin

the group 6 = U(4, Z'p) ae:
Hvi=01,..,p—1; |Ca(x)| = p*
Q¥ j=12..p~ 1 [Cc(yp|=p*
J¥ n=12..,p—1ad

¥Y¥m=01, ... p—1; |CG[:zm,n:]| - pg

4)
¥Yr=12..p—-1,t =012, ..p—1,ad

vm=0,1,...0-1; |Celz,.)|=P°

Proof 7:

By lemma (1.11), IC-(g)l = €l

Il

and by

theorem(2.2), |6| = p*
1) By theorem(2.8),
vi=01..,p-1 [C =1, then

L)
|Ca (x )| = ﬁ = FT= p*
2) By theorem(2.8),
¥i=12,.,p— 1 |c}_j | =1, then
|&] 2
€| = ﬁ =E=p*
J

3) By theorem(2.8), ¥ n=1.2,....p —1and
vm=0%.,p—1; |C

3.‘n..'L| = f 1
[&]

Then |Ce(Zpmm)] =m= %= 2
4) By theorem(2.8), ¥ r=12,...p — 1,
Yit=012 ..,p— 1land
Y ou= [.,1_, g B 1 , |C“'-tn| = :p ,

-

Then |Cg(wy.., )| = —=

| G(H‘ o | |f‘|-t'.".r.u| B i

Proposition (2.10):
Let G=U(4,;-3p)

following:-

then we have the



1) (p+1) cyclic subgroups of order p which
generated by elements of the classes of the
formcC,, C, with nermalizer equal to p*

;! b
p*(p+1) cyclic subgroups of order p which

generated by elements of the classes of the
form

..

. = 3
2 Cowr e with normalizer equal to p

Proof 8:
1By theorem(2.3),(2.8),al elements of the
conjugacy classes of the form ., L‘}..__have

order p(except the identity element),and
each class contains only one element which
is of the formu,., &, then we havep® —1
elements of order p,since every cyclic
subgroup of order p contains p-1 elements

of order p ,then we have %=p—|—1

cyclic subgroup of order p. Since every
cyclic subgroup of order p generated by

elements of the form Uy or Uy contains p-1
classes of the form C,or C).i_ sthen the
normalizer of these cyclic subgroups is
equal to p*.

2)By theorem(2.3),(2.8),since we have p(p-1)
classes of the form €5 ,p(p-l) classes of

the form Cwl_m ,which each class contains p

elements ,then we have p*(p— 1) elements
of the form
u_ 9 (p - 1)elements of the orm I, ,

then we havep* (- 1) 4 p*(p-1) = (p-1)(p%+p?)=
(p-Dp*(p+1) elements of order p of the
formu,or U, .each cyclic subgroup of order
p contains p-1 elements of order p then

(p—1lp*(p+1) .
T:p‘(p+l) cyclic

subgroups of order p.
Since every cyclic subgroup of order p
which generated by element of the formi/,or

U7, fixed (by conjugation) only by pelements
(which is form the centre of the group),
and p*(p— 1) elements of the formu_or ¥,
then the normalizer of these cyclic subgroups
isequal top*+p°(p—1) =

p*(1+p-1)=p°.

we have
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Theorem(2.11):

For any prime number p the Artin
exponent of the group U(4. Z, } is equal to p°

Proof 9:

According to the Brauer -coefficients
theorem, we caculate Brauer’s coefficients
using the formulain theorem (1.30)

- 1+ Zpfe1]]
[14 (p+1)pE )+ p¥(ptl) ﬂ(p]]

b,

[1+ (p+ D(=1) + p(p+D)(-1)]

‘_lHI |":£|H|\-|"‘L|I-H| |

H p—1-p*
p ]=—[P‘+IO+1]——[P +p+1]
= E)]—

|| [, | - |‘i.|

= [1C )]—
1 1. 2

- = @+ @n—?; (p=+p + 1)0,
~ Artin exponent of U(4, I, )=p°.

—+ X1
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