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Abstract
In this paper, we characterize the possible symmetry groups of the ballistic equations, in time

variable and two spatial variables.
Lie's method of continuous transformation groups is applied and it is shown that,

three-parameter Lie group of transformation acting on (t, x, y)-space is admitted by the equations.

Introduction
The use of continuous transformation

groups in the solution of differential equations
was developed by Lie and his followers in the
nineteenth century.

We will begin by reviewing a few relevant
points from Lie's theory of symmetry groups
of differential equations, as presented, for
instance, in [1,2,3].

Consider a general system of the nth-order
DEs:

∆ (x, u(n)) = 0 = 1,…,m ......... (1)
In p independent variables x = (x1,……,xp)

and q dependent variables u = (u1,……,uq),
with u(n) denoting the derivatives of the u's
with respect to the x's up to order n. In general,
a symmetry group of a differential equation is
a group which maps any solution of the
differential equation to another solution of the
differential equation. We consider here that
symmetries defined by infinitesimal
transformation, whose infinitesimals depend
on independent variables, dependent variables
and derivatives of dependent variables. Such
symmetries are local symmetries since at any
point x the infinitesimals are determined if
u(x) is sufficiently smooth in some
neighborhood of x.

Definition 1 [4]:
A local Lie group of transformations G is

called a symmetry group of the system of DEs
(1) if f = gof, where g∈G, is a solution
whenever f is.

It is always assumed that the
transformation group G is connected.
Connectivity implies that it suffices to work
with the associated infinitesimal generators,
which form a Lie algebra of vector field,
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on the space of independent and dependent
variables.

Since the transformations in G act on
functions u = f(x), they also act on their
derivatives, and so induce "prolonged
transformations".

(n)(x,u ) = pr(n)g(x,u(n))
The explicit formula for the prolonged

group transformation is rather complicated,
and so it is easier to work with the prolonged
infinitesimal generators, which are vector
fields,
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On the space of independent and

dependent variables and their derivatives up to
order n, which are denoted by :

j J
ju u x= ∂ ∂ , where J=(j1,…,jn), 1≤  j ≤ p.

The coefficients J of pr(n)v can be

derived in terms of the coefficients i and
of the original vector field (2).
Theorem 2 [4]:

A connected group of transformations G is
a symmetry group of the system of DEs (1) if
and only if the classical infinitesimal
symmetry criterion
pr(n)v ( ∆ )=0, = 1,…,r whenever ∆ =0

................................(4)
holds for every infinitesimal generator v of G.

The equations (4) are known as the
determining equations of the symmetry group
for the system. They form a large over
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determined system of partial differential
equations for the coefficients i and of v,
and can, in practice, be explicitly solved to
determine the complete connected symmetry
group of the system (1).

Basic Equations of the Problem
In this paper, we apply symmetry method

to the exterior ballistics equations,
2

2
d x dxv

dtdt
= ........................................ (5)

2

2
d y dyv g

dtdt
= − .................................. (6)

Where v =
1/22 2dx dy+

dt dt

             
, and g are

non zero constants.
These equations deal with the motion of a

projectile of weight w be fired with an initial
v0 at an angle of elevation ; let v denote the
velocity of the projectile at any point in its
path and let denote the inclination of the
velocity vector at that point and finally let
denote the radius of curvature of the trajectory
(path) at the point in question and let kvn

denote the air resistance at that point. Then
taking time as the independent variable and
resolving forces in the horizontal and vertical
directions at p give [5] :

2
n

2
w d xk v cos =
g dt

−

2
n

2
w d yk v sin w =
g dt

− −

or
2

n
2

d x kg v cos = Rcos
wdt

= − −

R R dx= vcos =
v v dt

− −

2
n

2
d y kg Rv sin g = vsin

w vdt
= − − −

R R dy= vcos = g
v v dt

− − −

where nkgR v
w

= , k and g are constants, n≥ 1.

Hence, the fundamental DEs in rectangular
form are :

2

2
d x R dx

v dtdt
= − ........................................ (7)

2

2
d y R dy g

v dtdt
= − − .................................. (8)

These equations are connected by the velocity
2 2v= x +y& & and they are often integrated

simultaneously using numerical methods. In
this research, we use infinitesimal
transformation to calculate the symmetry
group of the system (5), (6).

Infinitesimal Transformations
We now consider a one-parameter Lie's

group of infinitesimal transformation :
2

2

2

2

2

t* = t + T(t;x,y) + O( )

x* = x + X(t;x,y) + O( )

y* = y + Y(t;x,y) + O( )

and the extended transformation,

p* = p + P(t;x,y;p,q) + O( )

q* = q + Q(t;x,y;p,q) + O( )

r* = r + R(t;x,y;p,q;r,s) + 2

2

O( )

s* = s+ S(t;x,y;p,q;r,s) + O( )
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where
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dt dt dt dt

dx dy d x d yp = ,q = , r = ,s =
dt dt dt dt
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..............................(10)
Following the references [1,2,3], we derive
P,Q,R and S as follows:

2
t x t x y y

2
t y t y x x

P X (X T )p T p q(X pT )

Q Y (Y T )q T q p(Y qT )

= + − − + − 

= + − − + − 

..............................(11)
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R (X gX ) p(2X T + gT )
2qX p (X 2T )+ q X

2pq(X T ) p T pq T 2p qT

p +q p(X 2T )+qX 3p T 3pqT
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S=(Y gY )+2p(T +Y )+q(2Y T +3gT )
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............................. (12)

Assuming that equations (5) and (6) are
invariant under the transformation (9) we
have,

* *2 *2 *r p + q p= ............................ (13)
* *2 *2 *s p + q q g= − ...................... (14)

It is clear that, if P = Q = R = S = 0 then
equations (5) and (6) are invariant, however,
substituting equations (9) in (13), (14), using
equations (5) and (6) and considering the
coefficient of the first order of give,

2 2
2 2

(pP + qQ)pR p q P
p + q

  = + + 
  

...... (15)

2 2
2 2

(pP + qQ)qS p q Q
p + q

  = + + 
  

...... (16)

Now, simplification of (15), (16) and
equating coefficients of the monomials pn qm

give, the infinitesimal elements (T, X, Y)
leaving invariant equations (5) and (6).

The Determining Equations
In this section, we find the determining

equations for T, X and Y as follows :
Simplifying equation (15) gives :

2
tt y tx tt y

2
ty xx tx

2 2

2 3
yy xy ty xx

2 2
yy xy

(X gX ) p(2X T gT )

2qX +p (X 2T )
(p +q )

+ q X 2p q(X T ) p T

p q T 2p qT

 − + − +
 
 − −  
 
 + − −
 
 − −  

= 2 (Xt + pTt + 2p2 Tx + 2pqTy)2

(p4 - 2p2q2 + q4)
2

t t x t

2 3
y t x2 2 2

3
y y x

2 2
y x

pX qY p (X T )

q (Y T ) p  T
+2 p(p +q )

q T p q(X Y )

p qT p q T

 + + −
 
 + − −  
 
 − + +
 
 − −  

(Xt + pTt + 2p2 Tx + 2pqTy)

22
t t x t

2 2 2 3 3
y t x y

2
y x x

pX qY p (X T )

+ p q (Y T ) p T q T

p q(X Y ) p qT

 + + −
 
 + − − − 
 
 + + − 

............................ (17)

First, we find a primary set of determining
equations, and when solved, simplify the
calculation of the remaining equations :

Monomails coefficients
q6 Xyy = 0 (a)
q4

2(Xtt−gXy)Xyy+4 2
tyX = 2 2

tX (b)
q2 (Xtt−gXy )2 = 0 (c)

p2q6 2 2
yT 0= (d)

p4q4 2 2 2
x y4 (T T ) 0+ = (e)

p2q2 2 2 2
yt t4X Y= (f)

First (d) and (e) require that T is just a
function of t. Then (a) requires that X is at
most linear in y, i.e.,

X = A(t,x)y + B(t,x)
where A and B are arbitrary functions. Then
(b) and (c) show that At = Bt = 0. Hence, X is a
function of x only. Next by (f) Y doesn't
depend on t. For the sake of simplicity and to
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calculate the determining equations, we
rewrite equation (17), using the results
obtained above, as follows :

2 2 2 2
tt xx

2 4 2 2 4
t

(p +q )( pT +p X )

=( pT ) (p +2p q +q )

−

2 2 2 2
x t

2
y t x t

2 p(p q )[p (X -T )

q (Y T )+pqY ](pT )

+ +

+ −
2 2 2 2 2

x t y t xp [p (X -T )+q (Y T )+pqY ]+ −
............................. (18)

Hence, the second set of the determining
equations for the symmetry group of the
equations (5), (6) will be as in the following :

Mono
mails coefficients

p4 2
ttT 0= (g)

p5
tt xx2T X 0− = (h)

p6 2 2 2 2
xx t x t

2 2
x t

X T 2 (X T )Tt

(X T ) 0

= + −

+ − =
(i)

p2q2 2
ttT 0= (j)

p3q2
tt xx2T X 0− = (k)

p4q2
2 2 2 2
xx t y t t

2
x t t

X 2 T 2 (Y T )T

2 (X T )T

= + −

+ −
2

x t y t

2 2
x

2 (X T )(Y T )

Y

+ − −

+
(l)

p2q4 2 2 2
t y t t

2 2
y t

0 T 2 (Y T )T

(Y T )

= + −

+ −
(m)

p5q 2 2
x t x t x0 2 Y T 2 (X T )Y= + −

(n)
p3q3 2 2

x t y t x0 2 Y T 2 (Y T )Y= + −
(o)

Simplifying (m) gives that Y doesn't
depend on y.

Then (g) requires that T is at most linear in
t.

Now, using the available information we
simplify equation (16) to :
(p2 + q2) (2gTt + p2Yxx)2 = 2 (p4 +2p2q2 + q4)
(qTt)2 24− q2(p2 + q2) Tt [(Xx −  Tt) p2 −  Tt q2

+ pqYx] 2+ q2 [(Xx −  Tt) p2 −  Tt q2 + pqYx]2

..............................(19)
This gives the final set of the determining

equations :

Monomails coefficients
p2 2

t(2gT ) 0= (p)
p4

t xx4gT Y 0= (q)
p6 2

xxY 0= (r)
p2 2

t(2gT ) 0= (s)
p2q2

t xx4gT Y 0= (t)
p4q2 2 2 2 2

xx t t x t

2 2
x t

Y T 4 T (X T )

(X T )

= − −

+ −
(u)

p2q4 2 2 2 2
t t

2 2 2
t x t x

0 2 T 4 T
4 T (X T ) Y
= +

− − +

2
x t t2 (X T )T− − (v)

q6 2 2 2 2 2 2
t t t0 T 4 T T= + +

(w)
p3q3 2 2

t x x t x0 4 T Y 2 (X T )Y= − + −
(x)

pq5 2 2
t x t x0 4 T Y 2 T Y= − + (y)

First, (o) requires that T = C1, then (u)
requires that X = C2 . Next, (v) gives that
Y = C3, where Ci (i = 1,2,3) are constants.
Hence, theorem (2) guarantees that these are
the only continuous classical symmetries of
the equation.
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Conclusion
In this paper, possible invariant solutions

of the ballistic equations
x Ex

y Ey g

= −

= − −

&& &

&& &

Where E v− = , 2 2v= x +y& & are studied by
means of infinitesimal transformation of Lie
theory. The symmetry algebra of the equations
is spanned by the three vector fields,

v1 = ∂ t time translation
2

3

v x
space translation

v y

= ∂ 


= ∂ 
Exponentiation shows that if

( )xX F(t)y= = is a solution of the equations so

are
1X F(t )= −

( )2X F(t) 0= +

( )3 0X F(t)= +

This list of symmetries may seem small.
However it can be enlarged using Nucci (or
Krause) technique [6].

Once one has determined the symmetry
group of a system of differential equations, a
number of applications becomes available, for
example, one can directly use the defining
property of such a group and construct new
solutions to the system from known ones.

Finally, several cases of the ballistic
equations above where E = G(v)H(y) are
worthy of future investigation.
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