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Abstract

Let R be a commutative ring with identity and M be unitary (left) R-module. We shall introduce
the concepts of relatively cancellation modules (weakly relatively cancellation modules.

Clearly, the class of weakly relatively cancellation modules contains the class of relatively
cancellation modules.

The principal aim of this paper is to study in some details these two concepts. We give
necessary and (or) sufficient for these two types of modulesto be equivalent.

1. Introduction validity of the results that we obtain in part

Gilmer [1,p.60] has been introduced the one, we shall show that the class of cyclic
concept of cancellation ided to be the ideal | module is contained in the class of weakly
of R which satisfies the following: relatively cancellation modules. Also we shall

whenever Al = Bl with A and B are ideals of study the relation of weakly relatively
R implies A = B. Mijbass in [2] has been cancellation module with the trace of the
generalized this concept to modules. He has module T(M). And we shall end the part by
been defined the cancelation module introducing the behaviour of weakly relatively
whenever AM = BM with A and B are ideals cancellation module under locaization we
of RimpliesA = B. shal show that under certain conditions a
In this paper we shal introduce the module is globaly weskly relatively
concept of relatively cancellation module by cancellation if it is localy weakly relatively
using some restrictions on the ideals A and B cancellation.
in the above definition, namely we shall say Finaly, we remark that R in this paper
that. An R-module M is cadled relatively stands for a commutative ring with identity
cancellation, whenever AM = BM with A isa and al modules are unitary.

prime idedl of R and B is ay ided of R 2. Relatively Cancellation M odules

|mplcl:<|5 A|: ?h | ¢ ollati aul In this section we introduce the definition
early, the Class of cancellalion modules of relatively cancellation modules with some

con(;a‘lns tne class of r;l]iltilvely cance(ljl'?'tion examples about this concept. Moreover we
modules. However we give conaitions give some hasic properties of relatively

under yvhich the two c_Iams are equivalent. cancellation modules.
This paper conssts of two parts our o
principal aim of the first part is to study the 2.1 Definition :

relationships between cancellation modules An R-module M is caled relatively
and relatively cancellation modules. Also, we  cancellation whenever AM = BM, with A is a
study the behaviour of relatively cancellation ~ prime ideal of R and B is any idedl of R,
modules under localization. It turns out that impliesA = B.
the module is relatively cancellation whenever 2.2 Examples:
its localization is relatively cancellation, while 1) Zs as a Zo-module is relatively cancellation
the converse holds in the case that the module module.
is finitely generated. Next, we discuss the 2) Zs as a Zi-module is not relatively
property of relatively cancellation in each of cancelation module since: <3>Z; =
the module and its trace. <6>Zs, but <3>1 <6>

In part two, we shall introduce the concept 3) Zs as a Zismodule is relatively

of weakly reatively cancdlation module
which is a generdization of relatively
cancellation modules, we shall discuss the

cancdllation module.

175



4) Q a a Z-module is not relatively
cancellation module since: <p>Q = Q for
any prime number pin Z.

It isclear that <p>Q 1 Q

Now, let Xi Q. Thenx =2=P2=px?
b pb pb
T<p>Q where a, b 1T Z. Implies

QI <p>Q. Therefore Q is not relatively
cancellation module. However <p>1 Z.

5) Consider Z, =QyZ ={xi Q;x= 2+,
p p'

mi Z, i=12..} a Z-module is not

relatively cancellation module since: Qp =

(M gedmn)=1, n=p, i =12...} is a
n

submodule of Q containing Z.

we clamthat <p> Zp¥ :Zp¥
pp

(9] Zp¥ . Therefore Zp¥ is not relatively

cancdllation module.

Recall that the ement m in an R-module
M (where R is an integra domain) is called
torsion element if there exists0* r T R such
that r m = 0. And m is caled a non-torsion
dementifrmt 0," 0t ri R, [3].

For cyclic modules we have the following
result.

m
i+l

Let x +Z = p +Z 1

2.3 Proposition :

Every cyclic module generated by a non-
torson eement is reatively cancelation
module.

Proof:

Let M = <m>, where m is a non-torsion
dement and let A <m> = B <m>, where A is
prime ideal of R and B is any ided of R.
aml B <m> for al al A, then am = bm,
whereb1 B, impliesam—bm=0.

Therefore (a — b)m = O,but m is a non-
torsion element, then a — b=0, implies a=b.
Therefore Al B.

Similary, BI A, and hence A=B.

We shal show by an example that the
condition M is generated by a non-torsion
element in proposition (2.3) can not be
dropped.
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2.4 Example:
Let M=Z, be a Z-module, it is clear that

Z,=<1>and 1 isatorsion element in Z.

Now, since <2>Z, = 0 and <0> Z,= 0.
Then <2>7Z, = <0> Z,, but <2>1 <0>.

Therefore Z, is not relatively cancellation
module.

In the following theorem we give some
characterizations of relatively cancellation
modules.

2.5 Theorem:
Let M be an R-module. Then the following

statements are equivalent:

(1) M isrelatively cancellation module.

(2) If AMI BM, such that A is any idedl of R
and B isaprimeidea of R, then Al B.

(3) If <a>M | BM, such that al R and B is a
primeided of R, thenal B.

(4) (AM:M)=A, for al primeideals A of R.

(5) (AM:BM) = (A:B), for al ideds B of R
and for al primeideals A of R.

Proof:

(D) P (2: Suppose that M is relatively
cancellation module and AM | BM, where B
isaprimeidea of R and A isany ided of R.
Now, BM = AM + BM = (A + B)M, then B =
A + B, impliesA | B.

(2 b (3): Let <a>M | BM. Then<a> | B by
(2). Henceal B.

(3) b (4); Let xT (AM:M). ThenxM | AM
by (3) xT A.Hence (AM:M) i A.

On the other side, if x 1 A, then xMi AM.
ThereforexT (AM:M) and hence (AM:M)=A.
(4 b (5: Let x T ((AM:M):B) (since
(AM:M)=A by (4)), implies xI (AM:BM),
[4,prop.(2.3),p.38]. Now, if x T (AM:BM) =
((AM:M):B) and since (AM:M) = A by (4).
Thenx1 (A:B). Therefore (AM:BM) = (A:B).
(5) b (1): Let AM =BM and A is prime ided
of R, B isany idea of R. Then (AM:BM) = R,
implies (A:B) = R. Therefore A | B.

Similarly, A | B. Then A = B. Hence M is
relatively cancellation module.

3. Relatively Cancdlation Modules and
Cancellation Modules
In this section the relationship between
relatively cancellation property and
cancellation property of modules will be
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examine more closely and we try to lie some

light on thisrelation.
Recdl that an R-modue M is
caled faithful if anng(M) = 0, where

ang(M) ={rT R;rx=0," x1 M}, [5].

3.1 Proposition:

Let M be an R-module. Then M is a
cancellation module iff M is faithful relatively
cancellation module.

Proof:

Every cancellation module is relatively
cancellation module, and every cancellation
module is faithful module, [2, remark (1.4),
p.g].

Conversdy, Suppose that M is faithful
relatively cancdllation module. Let AM = BM,
where A and B aretwo idealsin R.

If A is prime idea of R and B is any ided
of R, implies A = B (snce M is relatively
cancellation module).

If A is not prime ideal of R and B is any
idea of R, AM-BM=0, implies (A-B)M=0.
Then (A — B) | anng(M). But M is faithful
module, implies A — B = 0, hence A = B.
Therefore M is a cancdllation module.

Recdll that the Jacobson radica of R is the
intersection of al maxima ideds of R,
JR)=C{I:l is maximal idea of R}, [6]. And
the Jacobson radical of M is the intersection of
al maximal submodules of M, JM) = C{N:N
is maximal submodules of M}, and JM) = M,
if M has no maximal submodules, [6].

The following proposition and it's
corollary give a necessary condition for a
module to be relatively cancellation module.

3.2 Proposition:
Let M be a non-zero module on R. If

M is reatively cancellation module, then
(IM):M) = JR).
Proof:

If AM = M for some prime ided A of R.
Then A = R, which is a contradiction! (since
M is relatively cancellation module). Hence
AM 1 M for al maximal ideals of R. Now,
(IJM):M) = (l%AaMM): A%(AAM:M),

[4Ex.14P240]. But A | (A M:M),
then (AM:M) = A, " | T U Therefore
(IM):M) = /%;UAA =JR).
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3.3 Corallary:
If M is areatively cancellation R-module,

then anns(M) I XR), and therefore anng(M) is
asmall ideal of R.

Proof:

By proposition (3.2), we s,
(IM):M) = JXR), anng(M) I (IM):M), then
annr(M) I XR) and hence anng(M) is small
ideal of R by [5].

Recdl that if R has only one maximal
ideal, then R is called alocal ring, [5].

3.4 Corallary:
If M is areatively cancellation R-module,

and anng(M) is a maximal ided of R, then R is
local ring.

Proof:
It isclear, so it is omitted.

4. Relativey Cancellation Modules and

localization

In this section, we give the concept of
contraction. For al submodules N of M we
shall denote the extension N in N, by N°® and
for al submodules L in M, we shall denote
the contraction of L in M, by L® where
L® means f (L); where f :M%® M, is the
natural homomorphism, [6,p.9].

In this section we shal study the behavior
under localization.

Before we introduce the next proposition,
we need to prove the following remark:

4.1 Lemma:

If A is a prime ided of R, then A, is a
prime ideal of Rp.
Proof:

Let f (@% (b) T Ap, wherea, b1 R and
f :A %® A, be natural homomorphism,
f (@) T A, (snce f is homomorphism),
abl A. Thenetheral Aorbl A (snceA
is prime ided). Therefore f (@) T A, or
f(b)l Ap. Hence A, isaprime ideal of R,.

4.2 Proposition :

Let M be an R-module and M is locally
relatively cancellation module. Then M is
relatively cancellation module.

Proof:

Let AM = BM, where A is aprime ided of
R and B is any ided of R. Then (AM),=(BM),,
implies ApM, = BpM,. Therefore A, = By, by



lemma (4.1), (since M, is relatively

cancellation module). Hence A [4,

prop.(3.13),p.70], which completes the proof
Recall that an R-module M is caled

finitdly generated if there exists subset

{X1, X2, ..., Xn} Of M suchthat M = Rx; + Rx,
.. + Rxy, [5, p.22].

4.3 Proposition :

Let M be a finitely generated R-module
and (B°), = (Bp)® for all maximal ideals P of R
and B is any ided of R. Then M is relatively
cancellation module if and only if M is localy
relatively cancellation module.

Proof:

Suppose that M is relatively cancellation
module of R and a/s My | B,M,, where
al R s Pand By isa prime ided of Ry,
Since M is finitely generated, therefore there
exists a subset {my, m, ..., my} of M which
generates M.

Now, " i=1 2 ...,n —1 Mp. Then

' H|_3

by m;
<

vl

x%T BoMp, implies am _ a
s

j=1 Su

j=1

.. Sj+1 ... Sn bj

é bm

i
. Hence there exists x | P

suchthat x tam =x s g bgm, . Puts =x
i=1
and z = x s. Thens am =z ébi]ﬂim
j=1

Therefore s a m 1 z (BYM 1 (Bp)M.
Implies saMi (By)M, where s=s.,%,...,5
Hence sa I (By)° (since M is relatively
cancellation module). f(sa) = f ()% (a) 1
(Bp))p = ((B9)p)p- Since f (S) is a unit element
inR,. Thenf (@) T ((BYp)p. But (B9, = B, [4,
prop.(3.6),p.67]. Therefore f (a) T B, implies
as

Bp. Hence M, is relatively cancellation

module over R,.
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5. Relatively Cancedllation M odules and the

Trace of Modules

Let M and N be two R-modules. The trace
of N over M denoted by T,,(N)=8§ q,(M),

v
where the sum is taken on al g in Hom
(M, N). In the specia case if N = R, then the
trace of M over R written by T(M) instead of
Tu(R), [4].

In this section we give some relationships
between the modules having the relatively
cancellation property and its trace see
proposition (5.1), corollary (5.2), corollary
(5.3) and corollary (5.4).

Let us start with the following concept. An
ideal of a ring R is cadled relatively
cancellation ideal if Al = Bl, where A is a
prime ideal of R and B is any idedl of R, then
A = B. It is known that if | is an ided of R,
then | is relatively cancellation ideal if and
only if | isrelatively cancdlation R-module.

Clearly, relatively cancdlation module is a
natural generalization of relatively cancdlation
ideal.

In the following result and it's corollaries
we study the relation between relatively
cancellation module and it's trace.

5.1 Proposition :

Lee M and N be two R-modules and
L= &g (M) be a submodule of N, where the
sum is taken for any subset of Hom(M,N),
such that L is relatively cancellation module.
Then M isrelatively cancellation module.

Proof:

Let AM = BM, where A is a prime ided
of R and B is any ided of R. Then
a (AM)=q; (BM), for each g1 Hom(M,N),
implies & g (AM)= @ ¢ (BM).
q T Hom(M,N) q 1 Hom(M,N)

But q(AM) = q(BM) = Bqg(M). Then

A a aM) B & aM).
g T Hom(M,N) g T Hom(M,N)

Therefore AL = BL, which impliesthat A = B
(sincelL isrelatively cancellation submodule).

5.2 Corollary:
If M is an R-module and T(M) is a

relatively cancdlation ideal of R, then M is
relatively cancellation module.
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Proof:
The result is clear by using the definition
of T(M) and proposition (5.1).

5.3 Coroallary:
If M is an R-module and T(M) is a

multiplication idead of R, which contain a non-
zero divisor, then M is relatively cancellation
module.

Proof:

Let al T(M) and a is a non-zero divisor.
T(M) is a multiplication ided of R, so there
exists an ideal J of R, such that : <a>=JT(M).
Implies T(M) is an invertible idea of R, [5,
prop.(6.3),p.125]. Therefore T(M) is a
cancellation ideal, [7,p.879], implies T(M) is
relatively cancellation module. Then M s
relatively cancdlation module, by corollary
(5.2).

5.4 Corallary:
Let M be an R-module such that T(M) is

relatively cancellation submodule.  Then

M*=Hom(M,R) is relatively cancellation
R-module.
Proof:

Let aM* | BM*, such that B is a prime

ided of R.
Now, afl aM* | BM*," f1 M*. Thus

afl BM* impliesaf= 3bf , where

j=1

bb T B ad f, fi T M*. Therefore
af (m) = gbf (m), "m T M. Then
aT(M) I BT(M).But T(M) is a relatively

cancellation submodule. Then a 1T B by

proposition (2.5(3)), and hence M* s
relatively cancellation module.

6.The Weak Relatively Cancelation
M odules

In this section we start with a concept of a
weak relatively cancellation modules. We shall
weakening the concept of relatively
cancellation property of modules by using an
extra condition on the result of the
cancellation. It turns out that the class of cyclic
modules is contained in the class of weak
relatively cancdlation modules, see
proposition (6.5). Next, some characterizations
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of weak relatively cancellation modules will
be introduced in proposition (6.6).

6.1 Definition:

Let M be an R-module. Then M is called
weak relatively cancellation module if
AM BM, where A is a prime idea of
R and B is any ided of R, then
A+anng(M) = B + anng(M).

6.2 Remark:

Every relatively cancellation module is a
weak relatively cancellation module.

The converse of remark (6.2) is not true, as
it is seen by the following example;

6.3 Example:
Consider Z, as a Z-module and let m; be

an odd prime in Z and n, isany odd in Z, such
thata mMm T nmp. Let <m>Zr=<mp>7,,
annk(Z)=<2>. We clam that <m>+<2>=
<mpy>+<2>=7 snce My, mp ae an odd
numbers, then my = 2ny + 1, mp = 2n+ 1,
whereng, nl Z.my = 2m 1 <m>+<2>
implies2n; + 1 —2n; < my > + < 2 >, therefore
11 <my >+ < 2>, and hence <my> +<2>=Z.

Similarly, we can prove that <my>+<2>=Z.
Then<m >+<2>=<mp>+<2>=7.
Therefore Z, is a weak relatively cancellation
module over Z. But Z, is not relatively
cancellation module, since < 3>Z, =< 5> Z,,
but<3>1 <5>,

The converse of remark (6.2) holds under
the condition M is faithful.

6.4 Proposition:

If M is a fathful
cancdlation module, then M
cancellation module.

weak relatively
is relatively

Proof:

Istrivial, so it is omitted.

In the following proposition we shall show
that the class of cyclic modules is contained in
the class of weak relatively cancellation
modules.

6.5 Proposition:
Every cyclic module is a weak relatively
cancdllation module.

Proof:

Let M = < m > be a cyclic module over R
withmT M, and let A<m> = B <m>, where A
is a prime ideal in R and B is any idedl in R.
Then aml B<m>, al A, implies am=bm, where



bl B. Therefore am-bm=0, implies (a—b)m=0.
Then a-bl anng(M). But a=b+a-b. Thus
al B+anng(M), implies A I B + anng(M).
Then A + anng(M) | B+anng (M).

Similarly, we prove that B+anng(M)
I A+anng(M) and hence A + anng(M) =
B + annkr(M), which iswhat we wanted.

We shall give some characterization of a
weak relatively cancellation modules in the
following theorem.

6.6 Theorem:

Let M be an R-module. Then the following
statements are equivalent:

(DM is a weak relatively cancélation
module.

(2) If AM | BM, such that A is any ideal of R
and B isaprimeided of R, then A1 B +
anng(M).

(3) If <a>M | BM, suchthat al RandBisa
primeideal of R, thenal B + anng(M).

(4) (AM :M) = A +annx(M), for al ideas A of
R

(5) (AM:BM) = (A +ann(M):B), where A isa
primeidea of R and B isany ideal of R.

Proof:

(D P (2: Let M be a weak reatively
cancellation module over R, and AM | BM.
Then BM = AM + BM = (A + B)M, implies
B + anng(M) = A + (B +anng(M)). Therefore
Al B+anng(M).

2 b (3): Let <a>Mi BM. Then <a> |
B+anng(M) by (2). Thereforeal B + anng(M).
) P (4): LetxT (AM:M). ThenxM | AM
implies x T A +anng(M) by (3). Therefore
(AM:M) [ A + anng(M).

Now, let x T A +anng(M). Then xM |
(A+anng(M))M, implies xM | AM +
anng(M)M = AM.

(4 b (5: Let x 1 (A + annr(M):B). But
(AM:M) A +anng(M) by (4). Then
x T ((AM:M):B) = (AM:BM) [4,prop.(2.3),
p.38]. Now, let xi (AM:BM). Then
xT ((A:B):B), since (AM:M) = A + anng(M),
therefore x T (A + annr(M):B). Hence
(AM:BM) = (A+anng(M):B).

(5) b (1): Let AM = BM, where A isa prime
idea of R and B is any ideal of R. Then
(AM:BM) = R.
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Therefore (A + anng(M):B) = R, implies
11 (A+anng(M):B). Therefore B | A +
annk(M). Then B +anng(M)i A + anng(M).

Similarly, we can prove that
A +annr(M) | B + anng(M). Therefore
A + anng(M) = B + anng(M). Hence M is a
weak relatively cancellation module.

7.The Trace of a Module and the Property
of Weak Relatively Cancellation Modules
The man am of this section is to
generalize the results in section four of chapter
one. We shall prove that if the trace of a
module is a weak relatively cancellation ideal
and anng(T(M)) = anng(M), then M is weak
relatively cancellation module, see corollary
(7.2), dso we shal show that the dua of a
module is weak relatively cancellation module
when the trace is weak relatively cancellation
idead and anng(T(M) anng(M*), see
proposition (7.3).

7.1 Proposition :
Let M and N be two R-modules, and
L= é g, (M) be asubmodule of N, where the
AU
sum is taken for any subset of Hom (M,N), L
is weak relatively cancelation, and
anng(L) = ang(M). Then M is a weak
relatively cancellation module.

Proof:
Let AM = BM, where A is prime ideal
of R and R and B is any idea of R. Then

a (AM) = g (BM), that implies § g, (AM)=

A g (BM). But g (AM)=Aq; (M)=q; (BM)=
Ba(M). Then A3 g (M)= B3 q(M).

Therefore AL = BL (since L is weak relatively
cancellation module), implies A +anng(L) = B
+anng(L). Therefore A+anng(M)=B+annk(M).
Then M is weak relatively cancellation
module.

7.2 Corallary:
If M an R-modules, T(M) is a weak

relatively cancellation ideal in R, and
annkx(T(M)) = anng(M). Then M is a weak
relatively cancellation module.

Proof:

The result is clear by using proposition
(7.1) and the definition of T(M).
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The dua of a module will be weak
relatively cancellation whenever the trace of
the module satisfies this property, as it is
shown in the following result.

7.3 Proposition:

If M is an R-modules, T(M) is a weak
relatively cancellation ideal over R such that
anng(T(M) = anng(M*), then M* is weak
relatively cancellation module.

Proof:
Let aM* | BM*, whereal R, and B is

prime ideal of R. Thena f = § b f, , where
j=1

biT Bandf,fiT M*.
Now," mi M, af(m) = Qbf (m). Then

j=1
aT(M) I BT(M), therefore a1 B + T(M)
(since T(M) is weak relatively cancellation
module). But anng(T(M)) = anng(M*), implies
al B + amg(M*). Hence M* is wesk
relatively cancellation module.

8.Weak Relatively Cancelation Modules
and Localization
In this section we shall try to generalize the
results in section three of chapter one.

8.1 Proposition:

Let M be a finitely generated R-module
and (Bp)° = (B), for al maximal ideds P of R,
B is any ided of R. Then M is a weak
relatively cancellation module if and only if M
is localy weak relatively cancellation module.

Proof:

Suppose that M is a weak relatively
cancellation module over R and P is a maximal
ideal of R.

Now, let a/s M, i B,M,, where B, is
prime ideal of Ry, al R, sT Panda/sT R,.

M is finitely generated, then there
existssubset  {my, mp, ..., m} of M
generates M. Then m/1l M, " i = 1,2,..n;
implies a/sx m/L 1 ByM, Therefore

am /s=gb, /s, >m /1, where 5; T P and
j=1

. D
b1 (Bp)C. Let t, = Olsij and by =sj, ..., Sj-1
=

S +1, ..., Sy Then a m/ls = g bpm /t, ,

i=1
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hence there exists x, | P such that x; t a m=xs
n

é. bijmj puts =xtandz=xs, impliess a

i=1

m =z gbgm, thensam 1 z(By)M i
i=1

(Bp)M. Therefore sa m i (Bp)°M, where
S=5,%, .. % Thensal (Bp)° + ang(M)
(snce M is weak reltively cancellation
module), impliesf (sa) =f () f (@) T ((Bp)° +
annkr(M))p, wheref : R%® R, be the natural
homomorphism. Therefore f (s) f (a) 1
((Bp)9)p + anng(M))p, [4, ex.(4),p.75]. Since M
is finitely generated, then annkr(M)p
annkr(Mp), [2,prop.(3.14), p.43]. Then f (s) f
@ I ((Bp))p + ame(M)), = ((Bp))p +
annr(Mp), f (S) is unit element of R, and
(B, B, [4, prop.(3.6),p.67]. Therefore
f@=asa 1 B, + awnr(My), implies
a/ s=a’/ st /sl B+ ang(Mp). Therefore
M, is weak relatively cancellation module over
Ry, by proposition (6.6).

Conversdly, suppose that M is localy
weak relatively cancellation module and let
AM = BM, where A is a prime ideal of R and
B is any ideal of R, suppose that P is maximal
ideal of R. Then (AM), = (BM),, implies
AMp = BpM,,. Therefore A, + anng(My) = By
+ anng(Mp) (since M, is weak relatively
cancellation module). M s finitely generated,
then A, + (annr(M))p = By + (annr(M))p.
Therefore  (A+  anng(M)), B +
annkr(M))p,implies A + anng(M) =B + annk(M)
[4, prop.(3.13),p.70]. Hence M is weak
relatively cancellation module.
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