Weak Forms of L (0-Generalized Closed) - Spaces

Arkan J. Mohammed

Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad-Iraq. E-mail :drarkanjasim@yahoo.com.

Abstract

In this paper, we introduce some concepts namely θ -generalized L_i-spaces, where i=1,2,3,4, which are weaker forms of L(θ -generalized closed)-spaces, these are spaces whose Lindelof subsets are θ -generalized closed and study some of their properties and investigate their relationships with L(θ -generalized closed)- spaces as well as among themselves.

Keywords: Lindelof space, θ -closed sets, generalized-closed sets, θ -generalized closed sets.

Introduction

In 1968, Velick [2] introduced the concept of θ -closed sets in topological space. Levine [3] introduced the concept of generalized closed sets as a generalization of closed sets in topological spaces. Recently Dontchev and Maki [4] have introduced the concept of a θ - generalized closed set. This class of sets has been investigated also by Arockiarani [5].

Throughout this paper, a space X means topological space (X, τ) on which no separation axioms are assumed, unless explicitly stated. If A is a subset of a space X, then the closure and the interior of A are denoted by cl(A) and Int(A) respectively.

1. Preliminaries

In this section, we recall some basic definitions and example needed in this work.

<u> Definition (1.1), [2]:</u>

The θ -closure of A, denoted by $cl_{\theta}(A)$, is the set of all $x \in X$ for which every closed neighborhood of x intersects A nontrivially. A set A is called θ - closed if $A = cl_{\theta}(A)$.

<u>Definition (1.2), [2]:</u>

The θ -interior of A, denoted by $\operatorname{int}_{\theta}(A)$, is the set of all $x \in X$ for which A contains a closed neighborhood of x. A set A is said to be θ -open provided that $A=\operatorname{int}_{\theta}(A)$. Furthermore, the complement of a θ -closed set is θ -open and the complement of a θ -open set is θ -closed.

Definition (1.3), [3]:

A set A is called a generalized closed (or briefly g-closed) if $cl(A) \subseteq O$, whenever $A \subseteq O$, and O is open in X. The complement of generalized closed set is called generalized open set (or briefly g-open).

Definition (1.4), [4]:

A set A is said to be θ -generalized closed (or briefly θ -g closed) provided that

 $cl_{\theta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. A set is called θ -generalized open (or briefly θ -g open) if its complement is θ -generalize closed.

From [4] it is easy to check that, every θ -closed set is θ -generalized closed and every θ -generalized closed set is g-closed. But the converse implication does not hold, see[4]. Also from[4] A countable union of θ -g closed sets need not be a θ -g closed set.

Definition (1.5):

Let A be a subset of X, then θ generalizeclosure of A (or briefly $cl_{\theta g}(A)$) is the intersection of all θ -g closed sets which contain A, that is:

 $\operatorname{cl}_{\theta g}(A) = \cap \{F \subseteq X : \operatorname{Fis} \theta - \operatorname{gclosed}, A \subseteq F\}.$

So if A is θ -g closed, then A=cl_{θg} (A).

Definition (1.6), [6]:

A set F in X is called $F\sigma$ -closed if it is the union of at most countably many closed sets.

Definition (1.7), [3]:

A space X is called $T_{\frac{1}{2}}$ -space if every

g- closed set is closed.

Definition (1.8), [7]:

A space X is called an Lc-space if every Lindelof subset of X is closed.

Definition (1.9), [1]:

A space X is called L (generalized-closed) (or briefly L (g-closed)) -space if every Lindelof subset of X is g-closed.

Definition (1.10), [1]:

A space is said to be L (θ -closed) -space if every Lindelof set in X is θ -closed.

Definition (1.11), [1]:

A space X is said to be L (θ -generalized closed) (or briefly L (θ -g closed))-space if every Lindelof subset of X is θ -g closed.

2. Generalization of L (θ-generalized closed) - spaces.

In this section, we give a generalization of $L(\theta$ -generalized closed)-spaces namely θ -generalized L_i (or briefly θ -g L_i), where i=1,2,3,4 and investigate their relationships with $L(\theta$ -g closed)- spaces as well as among themselves and study some of their properties.

Definition (2.1):

A set A is said to be $F\sigma$ - θ -generalized closed (or briefly $F\sigma$ - θ -g closed) if it is a countable union of θ -generalized closed sets. So every θ - g closed set is $F\sigma$ - θ - g closed set, but the converse is not true in general as in the following example.

Example (2.2):

Let X=R, be the real line with the usual topology. The sets $G_n = [\frac{1}{n}, 1]$ n=2,3,4,... are θ -closed sets which implies they are θ -g closed. But $G = \bigcup_{n=2}^{\infty} G_n = \bigcup_{n=2}^{\infty} [\frac{1}{n}, 1] = (0,1]$. Then G is F σ - θ -g closed, but it is not closed, which implies it is not θ -closed. To show that (0, 1] is not θ -g closed. For all $U \in \tau_U$ with $0 \in U$, such that $U \cap (0,1] \neq \phi$ also $cl(U) \cap (0,1] \neq \phi$,

that $U \cap (0,1] \neq \phi$ also $cl(U) \cap (0,1] \neq \phi$, which implies $cl_{\theta}(U) \cap (0,1] \neq \phi$, since $cl(U) \subset cl_{\theta}(U)$.

Now we introduce the following definitions.

Definitions (2.3):

A topological space X is called

- 1. θ -generalized L₁ (or briefly θ -gL₁) -space if every Lindelof F σ - θ -g closed set is θ -g closed.
- 2. θ -generalized L₂ (or briefly θ -gL₂) -space if L is Lindelof subset of X, then $cl_{\theta g}(L)$ is Lindelof.
- 3. θ -generalized L₃ (or briefly θ -gL₃) -space if every Lindelof subset of X is an F σ - θ g closed.

4. θ -generalized L₄ (or briefly θ -gL₄) -space if L is Lindelof subset of X, then there is a Lindelof F σ - θ -gclosed set F with L \subseteq F \subseteq cl_{$\theta\sigma$} (L).

Proposition (2.4):

If X is an L (θ -g closed) - space, then X is a θ -g L_i-space, where i=1,2,3,4.

Proof:

For i=1, let $K \subseteq X$ be a Lindelof $F\sigma$ - θ -g closed set. Since X is L(θ -g closed)- space, then K is θ -g closed. Therefore X is θ g-L₁-space.

For i=2, let A be a Lindelof subset of X, then A is θ -g closed, that is, A= $cl_{\theta g}$ (A), $socl_{\theta g}$

(A) is also Lindelof. Hence X is θg -L₂-space.

For i=3, let B be a Lindelof subset of X, then B is θ -g closed and so B is F σ - θ -g closed set. Hence X is θ -g L₃-space.

For i=4, let L be a Lindelof subset of X, then L is θ -g closed, so it is F σ - θ -g closed set. Therefore

 $L \subseteq L \subseteq cl_{\theta g}$ (L) and this implies that X is θ -gL₄-space.

Proposition (2.5):

Every space which is $\theta\mathchar`-gL_1$ and $\theta\mathchar`-gL_4$ is $\theta\mathchar`-gL_2\mathchar`-space.$

Proof:

Let A be Lindelof subset of θ -gL₁ and θ -gL₄ space X. Then there is a Lindelof F σ - θ -g closed set F such that A \subseteq F $\subseteq cl_{\theta g}$ (A). Since X is θ -gL₁-space, then F is θ - g closed, that is, F= cl_{\theta g} (F), but A \subseteq F, then cl_{\theta g} (A) $\subseteq cl_{\theta g}$ (F) =F, which implies that F = cl_{\theta g} (A). But F is Lindelof so cl_{\theta g} (A) is also Lindelof. Hence X is θ -gL₂- space.

Proposition (2.6):

Every θ -gL₃-space is θ -gL₄-space.

Proof:

Let A be Lindelof subset of X, then A is $F\sigma$ - θ -g closed set. Since $A \subseteq A \subseteq cl_{\theta g}$ (A).

Put A=F then, $A \subseteq F \subseteq cl_{\theta g}$ (A). Therefore X is θ -gL₄-space.

Definition (2.7):

A subset A of a space X is called θ -g dense if $cl_{\theta\sigma}(A)=X$.

Proposition (2.8):

Every θ -gL₂-space having a θ -g dense Lindelof subset is Lindelof.

Proof:

Let K be a Lindelof θ -g dense subset of θ -g L₂-space X, so X=cl_{θ g} (K) is also Lindelof.

Definition (2.9):

Let A be a subset of X, a point $x \in A$ is said to be θ -generalized interior (or briefly θ -g int) point of A, if there exists a θ -g open set U such that $x \in U \subseteq A$. The set of all θ -g interior points of A is denoted by $int_{\theta g}$ (A). Also A is called θ -g open if A= $int_{\theta g}$ (A).

Definition (2.10):

A space X is said to be θ -gT₁ if for every distinct points x and y there are two θ -g open sets U and V such that $x \in U, y \notin U$ and $x \notin V, y \in V$.

Theorem (2.11):

A space X is θ -gT₁, if and only if every singleton set is θ -g closed.

Proof:

Assume every singleton subset $\{x\}$ of X be θ -g closed. We have to show X is θ -gT₁.

Let x and y be two distinct points of X. But X- $\{x\}$ is a θ -g open set which contains y but does not contain x, similarly X- $\{y\}$ is a θ -g open set which contains x but not contain y. Hence X is θ -g T₁.

Conversely let X be θ -gT₁ and let x be any point of X. To show that X-{x} is a θ -g open, let $y \in X$ -{x}, then $y \neq x$.Since X is θ -gT₁, so there exists a θ -g open U_y such that $y \in U_y$ and $x \notin U_y$.It follows that $y \in U_y \subseteq X - \{x\}$, that is y is an θ -g interior point of X-{x}. Hence X-{x} is θ -g open set, therefore, {x} is θ -g closed set.

Proposition (2.12):

Every θ -gL₃-space is θ -gT₁-space.

Proof:

Let X be θ -gL₃-space and $x \in X$, to prove X is θ -gT₁-space, it is sufficient to prove $\{x\}$ is θ -g closed set. Since $\{x\}$ is countable, then it is Lindelof in X.

But X is θ -gL₃ space, then {x} is F σ - θ -gclosed set, that is, {x}= $\bigcup_{i\in I} U_i$, where U_i is θ -g closed for each $i \in I$ and I is a countable set, this implies {x} is θ -g closed. Therefore X is θ -gT₁-space.

Definition (2.13):

A topological space X is said to be θ -gp-space if every Fo- θ -g closed set is θ -g closed.

<u>Remark (2.14):</u>

Every θ - gp-space is a θ -gL₁-space.

<u>Proposition(2.15):[4]</u>

Let $A \subseteq Y \subseteq X$.

- (i) if A is θ- g closed relative to Y, Y is θ- g closed and open subspace of X, then A is θ- g closed in X.
- (ii) if A is θ -g closed in X, then A is θ -g closed relative to Y.

Theorem (2.16):

The property of space being θ -gL₃ is a hereditary property.

Proof:

Let X be a θ -g L₃ and Y is a subspace of X. To show Y is also θ -gL₃. Given L is a Lindelof subset of Y and so L is Lindelof subset of X, then L is F σ - θ -g closed in X, that is, there exists a family $\{F_i\}_{i\in I}$ of θ - g closed sets in X such that $L = \bigcup_{i\in I} F_i$, where I is a countable set.

By setting $F_i^* = Y \cap F_i$, one can get F_i^* is θ -g closed in Y for each i.

$$L \subseteq L \bigcap Y = (\bigcup_{i \in I} F_i) \bigcap Y = \bigcup_{i \in I} (F_i \bigcap Y) = \bigcup_{i \in I} F_i^*.$$

So L is Fo- $\theta\text{-g}$ closed in Y. Hence Y is $\theta\text{-g}$ L_3 -space.

Theorem (2.17):

The property of space being θ -g L₁ is a hereditary on an open and θ -gclosed set. *Proof:*

Let Y be a θ -closed subspace of θ -gL₁ space X. To show that Y is θ -gL₁.

Suppose that L is a Lindelof $F\sigma$ - θ -g closed subset of Y, that is, there exists a family $\{F_i\}_{i\in I}$ of θ -g closed sets in Y, such that $L=\bigcup_{i\in I}F_i$. So F_i is θ -g closed set in X for each i (by proposition)

(2.15(i)). Hence $L = \bigcup_{i \in I} F_i$ is Lindelof $F\sigma - \theta - g$

closed in X, Since X is θ -gL₁, then L is θ -g closed in X. But $L \subseteq Y \subseteq X$, then L is θ -g closed in Y by proposition (2.15(ii)). Hence Y is θ -g L₁.

Definition (2.18):

Let A be a subset of space X. A point $x \in X$ is said to be θ -g adherent point of A if $cl_{\theta}(U) \bigcap A \neq \phi$, where U is open set containing x. The set of all θ -g adherent points of A is θ -generalize- closure of A.

Proposition (2.19)

Let Y be open subset of X and $K\subseteq Y$, then $cl_{_{\theta g}}(K)_{_{inY}}=cl_{_{\theta g}}(K)_{_{inX}}\bigcap Y$.

Proof:

Clearly:

 $cl_{\theta g}(K)_{inY} \subseteq cl_{\theta g}(K)_{inX} \bigcap Y$ (1) Now, to show that:

 $cl_{\theta g}(K)_{inX} \bigcap Y \subseteq cl_{\theta g}(K)_{inY}.If$

$$\begin{split} &x\in cl_{\theta g}(K)_{inX}\bigcap Y\,, \ \ then \ \ x\in cl_{\theta g}(K)_{inX} \ \ and \\ &x\in Y. \ If \ x\in cl_{\theta g}(K)_{inX}, \ then \ \ cl_{\theta}(U)_{inX}\bigcap K\neq \phi \\ & \text{where } U \ \ is \ open \ subset \ of \ X \ and \ \ x\in U, \ but \\ & K=Y\cap K \,. \end{split}$$

So $cl_{\theta}(U)_{inX} \bigcap Y \bigcap K \neq \phi$, but

 $cl_{\theta}(U)_{inX} \bigcap Y = cl_{\theta}(U)_{inY}$ (since if Y be open subset of X and $K \subseteq Y$, then

 $cl_{\theta}(K)_{inY} = cl_{\theta}(K)_{inX} \bigcap Y [4])$. Hence

 $cl_{\theta}(U)_{inY} \bigcap K \neq \phi$, which implies

$$x \in cl_{\theta g}(K)_{inY} \ cl_{\theta g}(K)_{inX} \bigcap Y \subseteq cl_{\theta g}(K)_{inY}$$
.....(2)

From (1) and (2) we get: $cl_{\theta g}(K)_{inY} = cl_{\theta g}(K)_{inX} \bigcap Y$.

<u>Lemma (2.20), [4]:</u>

A space X is $T_{1/2}$ if and only if every θ -g closed set is closed.

Theorem (2.21):

Let X be a Lindelof, $T_{1/2}$ and θ -gL₂- space. Then any closed and open subspace of X is also θ -gL₂.

Proof:

Suppose Y is a closed, and open subspace of X. If K is Lindelof set in Y, so it is Lindelof in X, which is θ -gL₂-space, then $cl_{\theta g}$ (K) in X is Lindelof in X. Also $cl_{\theta g}$ (K) is closed in X, since X is $T_{1/2}$, so $cl_{\theta g}(K)_{in X} \cap Y$ is closed in Y. Since:

 $cl_{\theta g}(K)_{inY} = cl_{\theta g}(K)_{inX} \bigcap Y$

by proposition(2.19), then $cl_{\theta g}(K)_{in Y}$ is closed in Y, But Y is Lindelof, hence $cl_{\theta g}(K)_{in Y}$ Lindelof in Y. Therefore Y is θ -gL₂ space.

Theorem (2.22):

The property θ -gL₄ is hereditary on θ -closed property.

Proof:

Let Y be a θ -closed subspace of θ -gL₄space X, so Y be a closed subspace of X, since every θ -closed set is closed. And L be a Lindelof in Y, then L is Lindelof in X, which is θ -g L₄-space, then there exists Lindelof F σ - θ -g closed set F in X such that $F = \bigcup_{j \in I} T_j$,

where T_j is $\theta\text{-g}$ closed in X with $L \subseteq F \subseteq cl_{\theta g}$ $(L)_{in \, X}$.

Set $K = Y \bigcap F$, Y is closed in X, then K is closed in F, but F is Lindelof in X, so K is Lindelof in F and so it is Lindelof in Y. To show that K is $F\sigma$ - θ -g closed in Y. Since $K = \bigcup_{j \in I} (T_j \bigcap Y)$, and $T_j \bigcap Y$ is θ -g closed in X,

since the intersection of a θ -g closed set and a θ -closed set is always θ -g closed [4]. Hence $T_j \bigcap Y$ is θ -g closed in Y by proposition (2.15(ii)). Therefore K is $F\sigma$ - θ -g closed in Y, but $L=L \bigcap Y \subset K \subset cl_{\theta g}(L)_{in X} \cap Y = cl_{\theta g}(L)_{in Y}$.

Therefore Y is θ -gL₄.

Theorem (2.23):

Let X be a T_2 space, then X is $L(\theta-g closed)$ –space if and only if it is θ -g L_1 -space and θ -g L_2 -space.

Proof:

Assume if X is an L (θ -g closed), then it is θ -gL₁ and θ -gL₂ by definition.

Conversely, suppose L be a Lindelof set in X and $x \notin L$. But X is T_2 , so for each $y \in L$,

الخلاصة

there exists an open set V_y containing y with $x \notin cl(V_y)$. Therefore $L \subseteq \bigcup \{V_y : y \in L\}$, but L is Lindelof, then there exists a countable set $C \subseteq L$, such that: $L \subseteq \bigcup \{V_y : y \in C\} \subseteq \bigcup \{cl(V_y) : y \in C\}.$

For each $y \in C$, $cl(V_y)$ is closed so $L \cap cl(V_y)$ is closed in L, but L is Lindelof in X, then $L \cap cl(V_y)$ is Lindelof in L, which implies it is Lindelof in X. But X is θ -gL₂, then $cl_{\theta\sigma}(L \cap cl(V_y))$ is Lindelof.

Now if $W = \bigcup \{cl_{\theta_g}(L \cap cl(V_y)) : y \in C\}$. Then W is a countable union of Lindelof sets which implies it is also Lindelof, also W is a countable union of θg -closed sets which implies it is $F\sigma$ - θ -g closed. But X is θ -gL₁- space, then W is θ -g closed. But $x \notin L \cap cl(V_y), x \notin \{cl_{\theta_g}(L \cap cl(V_y)) : y \in C\},$ that is, $x \notin W$.

$$\begin{split} & \text{Since } L \subseteq \bigcup \{ cl(V_y) : y \in C \} \,, \\ & \text{so } L \subseteq \bigcup \{ L \bigcap cl(V_y) : y \in C \} \,, \\ & cl_{\theta g}(L) \subseteq \bigcup \{ cl_{\theta g}(L \bigcap cl(V_y) : y \in C \} = W \,. \end{split}$$

Therefore $x \notin cl_{\theta g}(L)$, that is x is not θ -g adherent point of L. Hence L is θ -gclosed.

References

- [1] Ali, H.G.; On L(θ g- Closed) Spaces; to appear.
- [2] Velicko, N.V.;"H-Closed Topological Spaces"; Amer Math, Soc.Transl, 78, 103-118, (1968).
- [3] Levien, N.; "Generalized Closed Set in topology"; Rend.Circ. Math. Palermo, (2)19, 89-96, (1970).
- [4] Dontchev, J.; Maki, H.; "On θ-Generalized Closed Sets"; Int.J. Math.Math. Sci. 22, no.2, 239-249, (1999).
- [5] Arockiarani, I.; Balachandran, K.; Ganster, M; "Regular Generalized Locally Closed Sets and RGL-Continuous Functions"; Indian J.Pure Appl.Math.28, no.5, 661-669, (1997).
- [6] Willard. S.;" General Topology"; Addison-Wesely, London, (1970).
- [7] Mukherjy, T.K.; Sarka, M.; "On a Class of Almost Discrete Spaces" Math, Vesink (16) (13), 459-474, (1979).

في هذا البحث قدمنا بعض المفاهيم والتي تسمى الفضاءات θ-gL_i حيث ان 1,2,3,4 و الذي هي فضاءات أضعف من الفضاءات (L(θ-g closed) هذه الفضاءات التي فيها المجاميع الجزئيه اللندلوفيه تكون المجاميع θ-g closed.

ثم درسنا بعض من خصائص وصفات الفضاءات θ-gL_i و العلاقات فيما بينها وبين الفضاءات L(θ-g closed).