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Abstract  

A computational investigation has been carried out in the field of charged-particle optics.  The 

work is concerned with the design of einzel (unipotential) lens by using non-classical variation 

method under zero magnification condition. 

The potential field distribution of the einzel lens has been represented by the following 

suggested function:  

U (z) = exp [-C1 (z-5)
2
] + C2  where C1 and C2 are constants, z  is the optical axis  and U (z)  is 

the axial potential distribution. The paraxial ray equation has been solved for finding the short beam 

trajectory of the charged particles traversing the lens. 

The axial potential distributions and its first and second derivatives, the optical properties such 

as the focal length and spherical and chromatic aberrations are determined by using non-classical 

variation method. The electrode shape of the einzel lens has been determined in the two dimensions. 

The aberrations of the electrostatic lens from our results depend on the beam trajectory of the 

charged particles, where the aberration is small when the beam trajectory is shorter. 
 

1. Introduction  

The most commonly used einzel 

(unipotential) lenses have three electrodes. The 

distinctive feature of einzel lenses is that they 

have the same constant potential U1 at both the 

object and the image side, the central electrode 

is at a different potential U2, therefore, they are 

used when only focusing is required but the 

beam energy must be retained. 

Einzel lenses are symmetrical with respect 

to the center of the lens for both of its foci. 

Hence, they are frequently called symmetrical 

lenses [1]. Einzel lenses are finding increasing 

applications in many areas of science and 

technology, because of their versatility and the 

rapid development of modern instrumentation 

[2,3,4,5,6]. It is possible, to destroy the 

symmetry by applying different voltages to the 

two outer electrodes and still have a 

practicable lens. The focusing action of the 

system remains essentially the same as in the 

symmetrical case, but it is not in general used 

owing to the obvious advantages of the latter 

[7].   
   

1. Axial Potential Distribution of an Einzel 

Lens 

It is aimed in the present work to find a 

more simple expression that would describe 

the axial potential distribution of an einzel lens 

with acceptable aberrations.  

The following expression is suggested 

to represent the potential distribution along 

the optical axis of an einzel lens: 
 

U (z) = exp [-C1(z-5)
2
] + C2  ......................... (1) 

 

where C1 and C2 are constant, and  this 

equation is chosen  because the path of the 

beam trajectory is shorter between the starting 

and ending points. And C1 is representing the 

change in the length of outer electrodes and is 

C2 the change in the ratio of voltage. 

The axial field distribution given in 

equation (1) for an einzel lens and its first and 

second derivatives is shown in Fig.(1). This 

field has been used for determining the 

trajectory and the aberration coefficients of the 

lens. Fig.(1) shows the axial field distribution 

of an einzel lens whose central electrode is at 

higher voltage than the two outside electrodes.  

Since the potential distribution )z(U  is 

constant at the boundaries, then its first 

derivative  zU  is zero. This indicates that 

there is no electric field outside the lens i.e. 

there is a field-free region away from the lens 

terminals where the trajectory of the charged 

particles beam is a straight line due to the 

absence of any force acting on it. The second 

derivative of the potential; )z(U   has two 

inflection points hence the lens has three 

electrodes. 
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Fig.(1) The axial potential distribution U (z) 

and its first and second derivative U'(z)  and 

U˝ (z) of an einzel lens. 
 

Fig.(2) shows the axial potential field 

distribution U (z) at various values of the 

constant C1 and at constant value for C2 = 1. It 

is seen that the change in C1 don't influent to 

the peak of the curve but only in the width of 

the curve, that means decreasing C1 will 

increase the separation distances between the 

central electrode and the outer electrodes.  

Therefore, studying the optical properties with 

changing C1 means the effect of the separation 

distance on the optical properties. 
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Fig.(2) The axial potential U(z) as a function 

of z at various  values of  C1 and constant 

value of C2=1.       
 

Fig.(3) shows the axial potential field U(z) 

as a function of the optical axis z for different 

values of C2 and C1 constant (C1=1). In Fig.(3) 

the peaks of the curves increase with 

increasing C2 with same behaviors for all the 

curves. Therefore, changing C2 will change the 

voltage ratio Ui/Uo where Ui the voltage of the 

central electrode and Uo is the voltage of the 

outer electrode.  
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Fig.(3) The axial potential U(Z) as a function 

of Z at various values of C2 and constant 

value of  C1=1. 
 

From the values of the axial potential 

distribution and its first and second derivatives 

the electrodes profile has been obtained as 

shown in Fig.(4). The radial and the axial 

dimensions of the electrodes r and z 

respectively have been normalized in terms of 

the total lens length L which has been taken in 

the present work to be equal to 10 mm .  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.(4) The three-electrodes of einzel lens 

which is corresponding to the axial 

distribution of constant C1 = 0.3, C2 = 0.07 

and L = 10. 
 

3. The Trajectory of Charged – particles 

Beam 
The trajectory of charged – particles beam 

through an axially symmetric electrostatic lens 

field, in terms of the axial potential U and  

its first and second derivatives )(zU   and 

)(zU  respectively, is given by the following 

equation [8]: 
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d r U (z) d r U (z)
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d z 2 U(z) d z 4 U(z)

 
    

 
 ........ (2) 

where r  is the radial displacement of the beam 

from the optical axis z, and the primes denote 

a derivative with respect to z.  

By using the non-classical variation 

method  the trajectory of the beam is given by:   
 

2 3 4

0 1 2r(z) 1 A z A z A z     .............. (3) 

 where A0, A1, A2 are constant.  
      

The electron beam trajectory along the 

electrostatic einzel lens field under zero 

magnification condition is shown in Fig.(5), 

the computation is made for C1 = 0.3 and  

C2 = 1 .  
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Fig.(5) The trajectory of the charged particles 

traversing the field of the lens operated under 

zero magnification condition at C1 = 0.3 and   

C2 = 1. 
 

4. Spherical Aberration 
The spherical aberration coefficient Csi at 

the image plane has been computed with the 

aid of the following formula [9] and [10]: 

i

0

1 z
2

2 4i
Si 4

i z

2
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4

(U ) 5 U (z) 5 U (z)
C ( ) ( )

16 (r ) 4 U(z) 24 U(z)

14 U (z) r 3 U (z) r
( ) ( ) ( ) ( ) .

3 U(z) r 2 U(z) r

U(z) r dz



 
     

    
    







 

 ................................. (4) 
 

where U = U (z) is the axial potential, the axial 

potential, the primes denote derivative with 

respect to z, and Ui = U(zi) is the potential at 

the image where z = zi. 

Fig.(6) shows the image-side relative 

spherical aberration coefficient is fC /  of the 

electrostatic einzel lens operated under zero 

magnification condition as a function of the 

voltage ratio 
oi U/U at various values of

1C .  

The trajectories which are shown in Fig.(5) 

have been used for computing the relative 

spherical aberration coefficients as a function 

of 
oi U/U at the value of C1 = 0.3, 0.4, 0.5 

and 0.6. The relative spherical aberration 

coefficients decreases as the ratio Ui/Uo 

increases up to limited values of Ui/Uo, where 

all the curves have the minimum values. 
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Fig.(6) The relative spherical aberration 

coefficient is f/C  as a function of  Ui / Uo  

at various C1 . 
 

It is seen that is f/C  has a minimum value 

at oi U/U = 1.5 which refer to the value of 

1C = 0.3. The calculation shows that the C1= 

0.6 gives the optimum value of the relative 

spherical aberration coefficient for Ui / Uo > 20 

and the value of this coefficient in this region 

still less than unity up to Ui/Uo = 50. 
 

5. Chromatic aberration  

The chromatic aberration coefficient Cci at 

the image plane has been computed with the 

aid of the following formula [8]: 
                     

1
i2

1
2

z

i
ci 2

i z0

(U ) U (z) U (z)
C r r r

(r ) 2 U(z) 4 U(z)

U(z) d z


   
          





 

 ..................................... (5) 
Within the trajectories which are shown in 

Fig.(5), the image-side relative chromatic 
aberration coefficient iic fC /  has been 
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computed as a function of the voltage 

ratio
oi U/U at various values of

1C . Fig.(7) 

shows that iic fC /  increases with increasing 

oi U/U . Low values of iic fC /  are achieved 

at high values of
1C . 
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Fig.(7) The relative chromatic aberration 

coefficient iic fC /  as a function of Ui/Uo  

at various value C1. 
 

 

6. Conclusion 

It appears from the present investigation 

that it is possible to design various types of 

electrostatic lenses with small aberrations   

operated under different potential ratios. 

It has been found that it is possible to 

design an einzel lens with small aberration and  

with minimum path of trajectory by used the  

non-classical variation method which can be 

used to solve the paraxial ray equation of 

charged particles beam. 

From the results it has been found that the 

aberration coefficient decreases as the C1 

decreasing, where the best result occur at the 

C1 is equal 0.3.  
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