A NOTE ON AN R- MODULE WITH APPROXIMATELY-PURE INTERSECTION PROPERTY

Uhood S. Al-Hassani
 Department of Computer Science, College of Science, University of Baghdad, Baghdad-Iraq.

Abstract

Let R be a commutative ring with identity and Let M be left R - module. A submodule N of an R- module M is said to be approximately-pure submodule of M (for short AP-pure), if $\mathrm{N} \cap \mathrm{IM}=\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{N} \cap \mathrm{IM})$, for each ideal I of R . the main purpose of this paper is to develop the properties of modules with the approximately- pure intersection property.

Keywords: pure submodule, approximately-pure submodule, module with approximately pure intersection property.

1. Introduction

In this paper we assume R is commutative ring with identity and all modules are unitary left R-module. A submodule N of an R-module M is called pure submodule, if for every finitely generated ideal I of R $\mathrm{IM} \cap \mathrm{N}=\mathrm{IN}$, [1]. Following [2], an R- module M has the pure intersection property (for short PIP), if the intersection of any two pure submodules is again pure. We introduce the concept of an R-module M has approximatelypure intersection property (for short AP-PIP). We prove that if N be AP- pure submodule of an R- module M, then M, has AP-PIP if and only if $\frac{\mathrm{M}}{\mathrm{N}}$ has AP - PIP, see proposition (2.3).

2.Properties of module which has approximately-pure intersection property:

Recall a submodule N of an R -module M is called approximately- pure (briefly AP-pure) if $\mathrm{N} \cap \mathrm{IM}=\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{N} \cap \mathrm{IM})$, for each ideal I of R, where $J(R)$ is the Jacobson radical of R. It is clear that each pure submodule is AP-pure submodule, but the converse is not true in general see [3, remark (1.2.14)].

Remark (2.1):

1. Let M be an R - module and let N be a summand of M , then N is a AP-pure submodule of M .
2. Let M be an R - module and let N be AP - pure submodule of M . If H is AP-pure submodule of N , then H is AP -pure submodule of M .
3. Let M be an R-module and let N be AP-pure submodule of M. if A is a submodule of M containing N, and $J(R) M \cap A=J(R) A$ then N is AP-pure submodule of A .
4. Let M be an R-module and let N be AP-pure submodule of M . If H is a submodule of N , then $\frac{\mathrm{N}}{\mathrm{H}}$ is AP-pure submodule of $\frac{\mathrm{M}}{\mathrm{H}}$.
5. Let M be an R-module. Let N and H be submodule of M , If H is AP-pure submodule of M and $\frac{N}{H}$ is AP-pure submodule of $\frac{\mathrm{M}}{\mathrm{H}}$, then N is AP-pure submodule of M .

Proof:

1. Clear.
2. Let I be an ideal of R , since N is AP- pure in M and H is AP-pure in N , then $\mathrm{N} \cap \mathrm{IM}=\mathrm{IN}$ $+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{N} \cap \mathrm{IM})$ and $\mathrm{H} \cap \mathrm{IN}=\mathrm{IH}$ $+\mathrm{J}(\mathrm{R}) \mathrm{N} \cap(\mathrm{H} \cap \mathrm{IN})$ but $\mathrm{H} \leq \mathrm{N}$, therefore: $\mathrm{H} \cap \mathrm{IM} \subseteq \mathrm{N} \cap \mathrm{IM}$

$$
=\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM})
$$

and hence:

$$
\begin{aligned}
\mathrm{H} \cap \mathrm{IM} \subseteq & {[\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM})] \cap \mathrm{H} } \\
= & (\mathrm{H} \cap \mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM} \cap \mathrm{H}) \\
= & (\mathrm{IH}+\mathrm{J}(\mathrm{R}) \mathrm{N} \cap(\mathrm{H} \cap \mathrm{IN})+\mathrm{J}(\mathrm{R}) \mathrm{M} \\
& \cap(\mathrm{H} \cap \mathrm{IM}) \\
\subseteq & \mathrm{IH}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{H} \cap \mathrm{IM})
\end{aligned}
$$

Since $\mathrm{IH}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{H} \cap \mathrm{IM}) \subseteq \mathrm{H} \cap \mathrm{IM}$, then:
$\mathrm{H} \cap \mathrm{IM}=\mathrm{IH}+\mathrm{J}(\mathrm{R}) \mathrm{N} \cap(\mathrm{H} \cap \mathrm{IM})$
3. Let I be an ideal of R, since N is AP-pure in M , then
$\mathrm{N} \cap \mathrm{IM}=\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{N} \cap \mathrm{IM})$.
But $\mathrm{A} \leq \mathrm{M}$, therefore:

$$
\begin{aligned}
\mathrm{N} \cap \mathrm{IA} & \subseteq \mathrm{~N} \cap \mathrm{IM} \\
& =\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM})
\end{aligned}
$$

and hence

$$
\begin{aligned}
\mathrm{N} \cap \mathrm{IA} & \subseteq[\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM})] \cap \mathrm{IA} \\
& =\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IA}) \\
& =\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~A} \cap \mathrm{~N} \cap \mathrm{IA}) \\
& =\mathrm{IN}+(\mathrm{J}(\mathrm{R}) \mathrm{M} \cap \mathrm{~A}) \cap(\mathrm{N} \cap \mathrm{IA}) \\
& =\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{A} \cap(\mathrm{~N} \cap \mathrm{IA})
\end{aligned}
$$

Since $I N+J(R) A \cap(N \cap I A) \subseteq N \cap I A$, then

$$
\mathrm{N} \cap \mathrm{IA}=\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{A} \cap(\mathrm{~N} \cap \mathrm{IA})
$$

4. Let I be an ideal of R, since N is AP-pure submodule of M , then:

$$
\mathrm{N} \cap \mathrm{IM}=\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM})
$$

$$
\text { So } \frac{N}{H} \cap \mathrm{I}\left(\frac{\mathrm{M}}{\mathrm{H}}\right)=\frac{\mathrm{N}}{\mathrm{H}} \cap \frac{\mathrm{IM}+\mathrm{H}}{\mathrm{H}}
$$

$$
=\frac{(\mathrm{N} \cap \mathrm{IM})+\mathrm{H}}{\mathrm{H}}
$$

$$
=\frac{\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM})+\mathrm{H}}{\mathrm{H}}
$$

$$
=\frac{\mathrm{IN}+\mathrm{H}}{\mathrm{H}}+\frac{\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM})+\mathrm{H}}{\mathrm{H}}
$$

$$
=\mathrm{I}\left(\frac{\mathrm{~N}}{\mathrm{H}}\right)+\frac{[\mathrm{J}(\mathrm{R}) \mathrm{M}+\mathrm{H}] \cap(\mathrm{N} \cap \mathrm{IM})}{\mathrm{H}}
$$

$$
=\mathrm{I}\left(\frac{\mathrm{~N}}{\mathrm{H}}\right)+\frac{\mathrm{J}(\mathrm{R}) \mathrm{M}+\mathrm{H}}{\mathrm{H}} \cap \frac{\mathrm{~N} \cap \mathrm{IM}}{\mathrm{H}}
$$

$$
=I\left(\frac{N}{H}\right)+J(R) \frac{M}{H} \cap\left(\frac{N}{H} \cap \frac{I M}{H}\right)
$$

$$
=\mathrm{I}\left(\frac{\mathrm{~N}}{\mathrm{H}}\right)+\mathrm{J}(\mathrm{R}) \frac{\mathrm{M}}{\mathrm{H}} \cap\left(\frac{\mathrm{~N}}{\mathrm{H}} \cap \mathrm{I}\left(\frac{\mathrm{M}}{\mathrm{H}}\right)\right)
$$

5. Clear.

Definition (2.2):

An R-module M is said to have the approximately pure intersection property (for short AP-PIP) if the intersection of any two AP - pure submodules is again AP-pure.

Proposition (2.3):

1. If an R-module M has the AP- PIP, then every AP- pure submodule of M has the AP-PIP.
2. Let N be AP-pure submodule of an R-module M. M has AP- PIP if and only if $\frac{\mathrm{M}}{\mathrm{N}}$ has AP-PIP.

Proof:

1. Clear
2. (\Rightarrow)

Let $\frac{\mathrm{A}}{\mathrm{N}}, \frac{\mathrm{B}}{\mathrm{N}}$ be two AP-pure submodules of $\frac{\mathrm{M}}{\mathrm{N}}$ and let K be an ideal in R . We want to show that:
$\left(\frac{A}{N} \cap \frac{B}{N}\right) \cap K\left(\frac{M}{N}\right)=K\left(\frac{A}{N} \cap \frac{B}{N}\right)+J(R) \frac{M}{N} \cap$ $\left[\left(\frac{A}{N} \cap \frac{B}{N}\right) \cap K\left(\frac{M}{N}\right)\right]$
We claim that each of A and B is AP-pure in M.

To show this, let I be an ideal in R and let $x \in A \cap I M$. Since $\frac{A}{N}$ is AP-pure in $\frac{M}{N}$, then:
$\frac{\mathrm{A}}{\mathrm{N}} \cap \mathrm{I}\left(\frac{\mathrm{M}}{\mathrm{N}}\right)=\mathrm{I}\left(\frac{\mathrm{A}}{\mathrm{N}}\right)+\mathrm{J}(\mathrm{R}) \frac{\mathrm{M}}{\mathrm{N}} \cap\left(\frac{\mathrm{A}}{\mathrm{N}} \cap \mathrm{I}\left(\frac{\mathrm{M}}{\mathrm{N}}\right)\right)$, Thus:

$$
\begin{aligned}
\frac{A}{N} \cap \frac{I M+N}{N}= & \frac{I A+N}{N}+\left(\frac{J(R) M+N}{N}\right) \cap \\
& \left(\frac{A}{N} \cap\left(\frac{I M+N}{N}\right)\right)
\end{aligned}
$$

and this implies that:

$$
\begin{aligned}
& \frac{A \cap(\mathrm{IM}+\mathrm{N})}{\mathrm{N}}=\frac{\mathrm{IA}+\mathrm{N}}{\mathrm{~N}}+ \\
& \quad \frac{(\mathrm{J}(\mathrm{R}) \mathrm{M}+\mathrm{N}) \cap(\mathrm{A} \cap(\mathrm{IM}+\mathrm{N}))}{\mathrm{N}} \\
& =\frac{(\mathrm{IA}+\mathrm{N})+(\mathrm{J}(\mathrm{R}) \mathrm{M}+\mathrm{N}) \cap(\mathrm{A} \cap(\mathrm{IM}+\mathrm{N}))}{\mathrm{N}},
\end{aligned}
$$

Therefore:

$$
\mathrm{A} \cap(\mathrm{IM}+\mathrm{N})=\mathrm{IA}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~A} \cap \mathrm{IM})+\mathrm{N},
$$ and hence:

$$
(\mathrm{A} \cap \mathrm{IM})+\mathrm{N}=\mathrm{IA}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~A} \cap \mathrm{IM})+\mathrm{N}
$$

Since $x \in A \cap I M \subseteq A \cap(I M+N)$, then:

$$
x \in I A+J(R) M \cap(A \cap I M)+N
$$

Let $\mathrm{x}=\mathrm{w}+\mathrm{m}+\mathrm{n}$, where $\mathrm{w} \in \mathrm{IA}$ and $\mathrm{m} \in$

$$
\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~A} \cap \mathrm{IM}) \text { and } \mathrm{n} \in \mathrm{~N}
$$

Now, consider:

$$
\begin{aligned}
\mathrm{n}=\mathrm{x}-\mathrm{w}-\mathrm{m} \in \mathrm{~N} \cap \mathrm{IM} & =\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~N} \cap \mathrm{IM}) \\
& \subseteq \mathrm{IA}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~A} \cap \mathrm{IM})
\end{aligned}
$$

and hence A is AP-pure in M. Since M has the AP-PIP, then $\mathrm{A} \cap \mathrm{B}$ is AP- pure in M .
Thus $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{KM}=\mathrm{K}(\mathrm{A} \cap \mathrm{B})+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap$ $((A \cap B) \cap I M)$
Now, let $x \in\left(\frac{A}{N} \cap \frac{B}{N}\right) \cap K\left(\frac{M}{N}\right)$, then $x=w+N$, where $w \in K M$, and

$$
x=a+N=b+N \text {, where } a \in A \text { and } b \in B .
$$

Thus $\mathrm{w}-\mathrm{a} \in \mathrm{N} \subseteq \mathrm{A}, \mathrm{w}-\mathrm{b} \in \mathrm{N} \subseteq \mathrm{B}$ and hence $\mathrm{w} \in \mathrm{A} \cap \mathrm{B}$.

Thus:

$$
\begin{aligned}
& w \in(A \cap B) \cap K M=K(A \cap B)+J(R) M \cap \\
& ((A \cap B) \cap K M) \\
& \text { Then } x=w+N \in K\left(\frac{A \cap B}{N}\right)=K\left(\frac{A}{N} \cap \frac{B}{N}\right) \\
& \qquad \quad K\left(\frac{A}{N} \cap \frac{B}{N}\right)+J(R) \frac{M}{N} \cap\left(\left(\frac{A}{N} \cap \frac{B}{N}\right) \cap\right. \\
& \left.\quad K \frac{M}{N}\right)
\end{aligned}
$$

(\Leftarrow) Conversely let E and F be AP- pure submodule of M , let N be a submodule of E and N be a submodule of F then $\frac{E}{N}$ and $\frac{F}{N}$ is AP-pure submodule of $\frac{M}{N}$. Since $\frac{M}{N}$ has AP-PIP, then $\frac{\mathrm{E}}{\mathrm{N}} \cap \frac{\mathrm{F}}{\mathrm{N}}=\frac{\mathrm{E} \cap \mathrm{F}}{\mathrm{N}}$ is AP- pure submodule of $\frac{M}{N}$. Therefore $E \cap F$ is AP-pure submodule of M .

Theorem (2.4):

Let M be an R - module, then M has the AP-PIP if and only if:
$(\mathrm{IA} \cap \mathrm{IB})+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{IM})=\mathrm{I}(\mathrm{A} \cap$ $B)+J(R) M \cap((A \cap B) \cap I M)$
for every ideal I of R and for every AP-pure submodule A and B of M .

Proof:

Suppose M has the AP-PIP then for each AP -pure submodules A and $\mathrm{B}, \mathrm{A} \cap \mathrm{B}$ is AP pure. Let I be an ideal in R , then
$(A \cap B) \cap I M=I(A \cap B)+J(R) M \cap((A \cap B) \cap I M)$ It is clear that:
$\mathrm{I}(\mathrm{A} \cap \mathrm{B})+\mathrm{J}(\mathrm{R}) \mathrm{M}((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{IM}) \subseteq(\mathrm{IA} \cap \mathrm{IB})+$ $\mathrm{J}(\mathrm{R}) \mathrm{M}((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{IM})$
But $(\mathrm{IA} \cap \mathrm{IB})+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{IM}) \subseteq$ $A \cap(B \cap I M)=(A \cap B) \cap I M$

$$
=\mathrm{I}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap((\mathrm{~A} \cap \mathrm{~B}) \cap \mathrm{IM})
$$

Thus:
$\mathrm{IA} \cap \mathrm{IB}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{IM})=\mathrm{I}(\mathrm{A} \cap$ $B)+J(R) M \cap((A \cap B) \cap I M)$

Conversely, let A and B be AP-pure submodule of M and I an ideal in R . Then:
$\mathrm{A} \cap \mathrm{B} \cap \mathrm{IM}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{IM})=\mathrm{A} \cap(\mathrm{IB}+$ $\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{B} \cap \mathrm{IM})$
Similarly:
$\mathrm{A} \cap \mathrm{B} \cap \mathrm{IM}=\mathrm{B} \cap(\mathrm{IA}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{B} \cap \mathrm{IM})$
But A, B are AP- pure in M. Thus:
$\mathrm{A} \cap \mathrm{B} \cap \mathrm{IM} \subseteq \mathrm{IA} \cap \mathrm{IB}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{A} \cap \mathrm{B} \cap \mathrm{IM})$ $=I(A \cap B)+J(R) M(A \cap B \cap I M)$.

Theorem (2.5):

Let M be an R -module, then M has the AP-PIP if and only if for every AP-pure submodules A and B of M and for every R homomorphism $\mathrm{f}: \mathrm{A} \cap \mathrm{B} \longrightarrow, \mathrm{M}$ such that:
$(\mathrm{A} \cap \operatorname{Im} \mathrm{f})+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{A}+\operatorname{Im} \mathrm{f} \cap \mathrm{IM})=\{0\}$ and $\mathrm{A}+\operatorname{Im} \mathrm{f}$ is AP -pure in M , ker f is AP- pure in M.

Proof:

Assume that M has the AP-PIP. Let A and B be AP-pure submodules of M and $\mathrm{f}: \mathrm{A} \cap \mathrm{B} \longrightarrow \mathrm{M}$, be an R - homomorphism such that $\mathrm{A} \cap \operatorname{Im} \mathrm{f}=\{0\}$ and $\mathrm{A}+\operatorname{Im} \mathrm{f}$ is AP- pure in M.
Let $T=\{x+f(x), x \in A \cap B\}$
It is clear that T is a submodule of M.
To show that T is AP- pure in M. let I be an ideal in R and
$y=\sum_{i=1}^{n} r_{i} m_{i} \in T \cap I M, r_{i} \in R, m_{i} \in M$
Hence:
$y=\sum_{i=1}^{n} r_{i} m_{i}=x+f(x)$ for some $x \in A \cap B$.
Since:
$y=\sum_{i=1}^{n} r_{i} m_{i}=x+f(x) \in A \cap B+\operatorname{Im} f \subseteq A+\operatorname{Im} f$ and A $+\operatorname{Im} \mathrm{f}$ is AP-pure in M. Thus:
$y=\sum_{i=1}^{n} r_{i} m_{i} \in(A+\operatorname{Im} f) \cap I M=I(A+\operatorname{Im} f)+$ $\mathrm{J}(\mathrm{R}) \mathrm{M} \cap((\mathrm{A}+\mathrm{Im} \mathrm{f}) \cap \mathrm{IM})$
Therefore $\sum_{i=1}^{n} r_{i} m_{i}=\sum_{i=1}^{n} r_{i}\left(x_{i}+y_{i}\right)+k$
$\mathrm{x}_{\mathrm{i}} \in \mathrm{A}, \mathrm{y}_{\mathrm{i}} \in \operatorname{Im} \mathrm{f}, \forall \mathrm{i}=1,2, \ldots, \mathrm{n} ; \mathrm{k} \in \mathrm{J}(\mathrm{R}) \mathrm{M}$ $\cap(\mathrm{A}+\operatorname{Im} \mathrm{f} \cap \mathrm{IM})$
Thus $y=\sum_{i=1}^{n} r_{i} m_{i}=\sum_{i=1}^{n} r_{i} x_{i}+\sum_{i=1}^{n} r_{i} y_{i}+k$, hence
$\mathrm{x}-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}-\mathrm{f}(\mathrm{x})+\mathrm{k} \in(\mathrm{A} \cap \operatorname{Im} \mathrm{f})$ $+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap((\mathrm{A}+\mathrm{Im} \mathrm{f}) \cap \mathrm{IM})=0$
Therefore $\mathrm{x}=\sum_{i=1}^{n} \mathrm{r}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \in(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{IA}$.
But $\mathrm{A} \cap \mathrm{B}$ is AP-pure in M, hence is AP-pure in A. Thus:
$(A \cap B) \cap I A=I(A \cap B)+J(R) M \cap((A \cap B) \cap I A)$.
Thus $x \in I(A \cap B)+J(R) A \cap((A \cap B) \cap I A)$

Let $x=\sum_{i=1}^{n} r_{i} w_{i}+h, w_{i} \in A \cap B, h \in J(R) A \cap$
$((A \cap B) \cap I A)$.
Then $f(x)=\sum_{i=1}^{n} \operatorname{rif}(w i)+f(h)$
Now:

$$
\begin{aligned}
y & =x+f(x)=\sum_{i=1}^{n} r_{i} w_{i}+\sum_{i=1}^{n} r_{i} f\left(w_{i}\right)+f(h) \\
& =\sum_{i=1}^{n} r_{i}\left(w_{i}+f\left(w_{i}\right)\right)+f(h) \in I T+J(R) M \cap(T \cap I M)
\end{aligned}
$$

Thus $\mathrm{T} \cap \mathrm{IM}=\mathrm{IT}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{T} \cap \mathrm{IM})$ and T is AP-pure in M.
Next, we show that $\operatorname{ker} f=(A \cap B) \cap T$
Let $x \in \operatorname{ker} f$, then $x \in A \cap B$ and $f(x)=0$
Hence $x \in T$, Now let $x \in(A \cap B) \cap T$, then $x=y+f(y), y \in A \cap B$, then:
$x-y=f(y) \in A \cap \operatorname{Im} f$

$$
\leq(\mathrm{A} \cap \operatorname{Im} \mathrm{f})+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{~A}+\operatorname{Imf} \cap \mathrm{IM})=0
$$

Therefore $f(x)=f(y)=0$ and $x \in \operatorname{ker} f$
Since M has AP-PIP, then $(A \cap B) \cap T=$ kerf is AP-pure in M.
Conversely, let A and B be AP-pure submodules of M .
Define $\mathrm{f}=\mathrm{A} \cap \mathrm{B} \longrightarrow \mathrm{M}$, by:
$\mathrm{f}(\mathrm{x})=0, \forall \mathrm{x} \in \mathrm{A} \cap \mathrm{B}$. It is clear:
$(\mathrm{A} \cap \operatorname{Im} \mathrm{f})+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{A}+\operatorname{Im} \mathrm{f} \cap \mathrm{IM})=0$
and $\mathrm{A}+\operatorname{Im} \mathrm{f}=\mathrm{A}$ is AP- pure in M , then:
ker $\mathrm{f}=\mathrm{A} \cap \mathrm{B}$ is AP-pure in M .
By the same argument one can prove the following:

Theorem (2.6):

Let M be an R - module, then M has the AP-PIP if and only if for every AP- pure submodules A and B of M and for every R- homomorphism $\mathrm{f}=\mathrm{A} \cap \mathrm{B} \longrightarrow \mathrm{C}$, where C is a submodule of M , such that:
$\mathrm{A} \cap \mathrm{C}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{A}+\mathrm{C} \cap \mathrm{IM})=0$
and $\mathrm{A}+\mathrm{C}$ is AP-pure in M , kerf is AP- pure in M.

Lemma (2.8):

Let $\mathrm{M}=\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \mathrm{M}_{\mathrm{i}}$ where M_{i} is a submodule of $\mathrm{M} \forall \mathrm{i}$ and let W_{i} be a submodule of M_{i}, for each i, then if W_{i} is AP- pure in M_{i}, for each i then $\oplus \mathrm{W}_{\mathrm{i}}$ is AP-pure in M. $i \in I$

Proof:

Let J be an ideal ${ }_{\text {in }} \mathrm{R}$ and:
$x=\sum_{j=1}^{n} r_{j} x_{j}\left(\underset{i \in I}{\oplus} W_{i}\right) \cap J M, x_{j} \in\left(\underset{i \in I}{\oplus} M_{i}\right)$
then:
$\mathrm{x}_{\mathrm{j}}=\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{M}_{\mathrm{ij}}, \mathrm{M}_{\mathrm{ij}} \in \mathrm{M}_{\mathrm{i}}$, for each $\mathrm{i} \in \mathrm{I}$,
thus:
$\mathrm{x}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{j}} \sum_{\mathrm{i} \in \mathrm{I}} \mathrm{m}_{\mathrm{ij}}=\sum_{\mathrm{i} \in \mathrm{I}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{j}} \mathrm{m}_{\mathrm{ij}}$,
since:
$\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{j}} \mathrm{m}_{\mathrm{ij}} \in \mathrm{m}_{\mathrm{i}}, \mathrm{M}=\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \mathrm{M}_{\mathrm{i}}$,
then the element x can be written uniquely as $\sum_{i \in I} \sum_{j=1}^{n} r_{j} m_{i j}$; but $x \in \underset{i \in I}{\oplus} w_{i}$, thus $\sum_{j=1}^{n} r_{j} m_{i j} \in w_{i}$,
$\forall \mathrm{i}$, and hence:

$$
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{j}} \mathrm{~m}_{\mathrm{ij}} \in \mathrm{w}_{\mathrm{i}} \cap \mathrm{JMi}=\mathrm{Jw}_{\mathrm{i}}+\mathrm{J}(\mathrm{R}) \mathrm{M}_{\mathrm{i}} \cap\left(\mathrm{w}_{\mathrm{i}} \cap \mathrm{M}_{\mathrm{i}}\right)
$$

(Because W_{i} is AP- pure in M_{i}) So

$$
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{j}} \mathrm{~m}_{\mathrm{ij}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{j}} \mathrm{w}_{\mathrm{ij}}+\mathrm{h}, \mathrm{~h} \in \mathrm{~J}(\mathrm{R}) \mathrm{M}_{\mathrm{i}} \cap\left(\mathrm{~W}_{\mathrm{i}} \cap \mathrm{JM}_{\mathrm{i}}\right)
$$

$\mathrm{W}_{\mathrm{ij}} \in \mathrm{W}_{\mathrm{i}}$, for each j . Thus:

$$
\begin{aligned}
\mathrm{x}= & \sum_{\mathrm{i} \in \mathrm{I}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}} \mathrm{w}_{\mathrm{ij}} \\
= & \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{r}_{\mathrm{j}} \sum_{\mathrm{i} \in \mathrm{I}} \mathrm{w}_{\mathrm{ij}}+\mathrm{h} \in \mathrm{~J}\left(\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{J}(\mathrm{R})\left(\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \mathrm{M}_{\mathrm{i}}\right) \\
& \cap\left(\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \mathrm{~W}_{\mathrm{i}} \cap \mathrm{~J}\left(\underset{\mathrm{i} \in \mathrm{I}}{\oplus} \mathrm{M}_{\mathrm{i}}\right) .\right.
\end{aligned}
$$

The converse is true when

$$
\mathrm{J}(\mathrm{R}) \mathrm{M}_{\mathrm{i}} \cap \mathrm{~W}_{\mathrm{i}}=\mathrm{J}(\mathrm{R}) \mathrm{W}_{\mathrm{i}} .
$$

Lemma (2.9):

Let $\mathrm{M}=\oplus \mathrm{M}_{\mathrm{i}}$ where M_{i} is a submodule of i $\in \mathrm{I}$
$\mathrm{M}, \forall \mathrm{i}$ and let W_{i} be a submodule of M_{i}, for each i, then if $\underset{i \in I}{\oplus} W_{i}$ is AP- pure in M, and
$\mathrm{J}(\mathrm{R}) \mathrm{M}_{\mathrm{i}} \cap \mathrm{W}_{\mathrm{i}}=\mathrm{J}(\mathrm{R}) \mathrm{W}_{\mathrm{i}}$ then W_{i} is AP- pure in M_{i}, for each i .

Proof:

Assume that $\oplus \mathrm{W}_{\mathrm{i}}$ is AP- pure in M . since $i \in I$
W_{j} is a summand of W_{i}, then W_{j} is AP- pure in $\oplus \mathrm{W}_{\mathrm{j}}$. But $\oplus \mathrm{W}_{\mathrm{j}}$ is AP- pure in M , so W_{j} is

AP-pure in M since W_{j} is a submodule of M_{j}, then W_{j} is AP- pure in M_{j}.

Proposition (2.10):

Let $\mathrm{M}=\oplus \mathrm{M}_{\mathrm{i}}$ be an R - module where each $\mathrm{i} \in \mathrm{I}$
M_{i} is a submodule of M . if M has the AP-PIP, then each M_{i} has the AP-PIP.

Proof:

Suppose that M has AP-PIP. Since M_{i} is a summand of M, then M_{i} is AP- pure in M and hence M_{i} has the AP-PIP.

References

[1] C. Faith, Algebra I, rings, "Modules and Categories", Springer Verlag, Berlin, Heidelberg, New York, 1973.
[2] B.H Al-Bahraany, "Module with the Pure Intersection Property". PhD. Thesis, College of Science, University of Baghdad, 2000.
[3] Maha Abdulazeez Ali, "Approximately Projective Modules", M.Sc. Thesis, College of Science, University of Al-Mustansiriyah 2007.

الخلاصة

مقاسا أيسر ا/حاديا على R. يسمى المقاس الجزئي N نقيــا تتريبا في M، اذا كان:
$\mathrm{N} \cap \mathrm{IM}=\mathrm{IN}+\mathrm{J}(\mathrm{R}) \mathrm{M} \cap(\mathrm{N} \cap \mathrm{IM})$
لكل مثالي I في R. الههف الرئيسي من هذا البحت هو
تطوير خواص المقانسات التي تنتلك خاصية النقاطع اللنقـي
تقرييا.

