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Abstract
In this article, the homotopy analysis method (HAM) has been employed to obtain the solution

of fractional integro-differential equations of the form
t

*
0

D y(t) p(t)y(t) f (t) k(t,s)F(y(s)) ds     , 0 <  < 1

Where the fractional derivative is described in the Caputo sense. We shall employ here two
approaches based on homotopy analysis method first for the linear fractional integro-differential
equations and second for the nonlinear fractional integro-differential equations. This indicates the
validity and great potential of the homotopy analysis method for solving such types of equations.
Keywords: homotopy analysis method, fractional integro differential equations.

1. Introduction
Fractional integro-differential equations

arise in modeling processes in applied science
(such as physics, engineering, finance,
biology,…) many problems in acoustics,
electromagnetic, viscoelasticity, hydrology
and other areas of application can be modeled
by fractional differential equations., [Mittal,
2008].

In this paper we shall consider the
fractional order integro-differential equation of
the type:

*D y(t) p(t)y(t) f (t)   
t

0
k(t,s)F(y(s))ds, t [0,1]

y(0)  

where *D is Caputo s fractional derivative
and is a parameter describing the order of
the fractional derivative, and F(y(x)) is a
non-linear continuous function. Such kind of
equations arises in the mathematical modeling
of various physical phenomena, such as heat
conduction in materials with memory.
Moreover, these equations are encountered in
combined conduction, convection and
radiation problems (see for example [Caputo,
1967], [Olmstead and Handelsman, 1976],
[Mainardi, 1997]).

The homotopy analysis method (HAM)
was first proposed by Liao in his Ph.D. thesis
[Liao, 1992]. A systematic and clear
exposition on HAM is given in [Liao, 2003].
In recent years, this method has been
successfully employed to solve many types of
non-linear, homogenous or nonhomogenous
equations and system of equations as
well as problems in science and engineering
[Jafari, 2009].

The HAM is based on homotopy, a
fundamental concept in topology and
differential geometry. Briefly speaking, by
means of the HAM, one construct a
continuous mapping of an initial guess
approximation to the exact solution of
considered equations. An auxiliary linear
operator is chosen to construct such kind of
continuous mapping and an auxiliary
parameter is used to ensure the convergence of
solution series. The method enjoys great
freedom in choosing initial approximations
and auxiliary linear operators. By means of
this kind of freedom, a complicated non-linear
problem can be transferred into an infinite
number of simpler, linear sub- problems
[Jaradat, 2008].

In this paper, we present two approaches
for solving fractional integro-differential
equations based on HAM the first one is the
classical HAM presented by [Liao, 1992] is
used to solve the non-linear fractional integro-
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differential equations but we shall use it for
the linear fractional integro-differential
equations only and the second approach
is the reliable algorithm of HAM given by
[Odibat, 2010] is used to solve nonlinear
fractional integro-differential equation because
this approach gives accurate result for
nonlinear case in comparison with the first
approach.

Illustrative examples are presented to
demonstrate the validity and applicability of
the two approaches. MATHCAD 2001i
computer software used to carry out the
computations.

2. Basic Definitions [Manardi, 1997],
[Gorenflo, 1997] [Zurigat, 2010]

Definition (2.1):
A real function f(x), x > 0, is said to be in

the space ,c � if there exist a real

number p   such that f(x)  xp f1(x),
where f1(x) is continuous in [0,), clearly
c c  if    .

Definition (2.2):
A function f(x), x > 0 is said to be in the

space mc , m {0} � , if fm c .

Definition (2.3):
The left sided-Liouville fractional integral

operator of order   0 of a function
f c , 1    is defined as:

t

1
0

0

1 f (t)J f (x) dt , 0, x 0
( ) (x t)

J f (x) f (x)




   
  





In the present section, some of the most
important concepts related to HAM are given
for completeness.

Definition (2.4):
Let mf c , m {0}  � then the Caputo

fractional derivative of f(x) is defined
m (m)

m

m

J f (x), m 1 m, m
D f (x) d f (x) , m

dx






     


 
 



�

Hence, we have the following properties:

1. v vJ J f J , , v 0, f c , 1. 
      

2. y ( )J x x , 0, 1,
( 1)

  
     
   

x > 0.

3.
(k) km 1

*
k 0

xJ D f (x) f (x) f (0 ) ,
k!

  


   x > 0,

m  1 <   m.

3. The Homotopy Analysis Method
Consider the non-linear equation in

operator form:
N[y(x)] 0
where:
N  Non-linear operator
Y(x)  Unknown function
x  The independent variable.

Let y0(x) denote an initial guess of the
exact solution y(x), h  0 an auxiliary
parameter, H(x)  0 an auxiliary function and
L an auxiliary linear operator with the property
L[y(x)]0 when y(x)0. Then using q[0,1] as
an embedding parameter, we construct such a
homotopy.

0(1 q)L[ (x,q) y (x)] qhH(x)N[ (x,q)]    
...................... (1)

It should be emphasized that we have great
freedom to choose the initial guess y0(x), the
auxiliary linear operator L, the non-zero
auxiliary function H(x). When q  0, the zero-
order deformation Equation (1) becomes:

0(x,0) y (x)  ...................................... (2)

and when q  1, since h 0 and H(t)  0, the
zero-order deformation Equation (1) is
equivalent to:

(x,1) y(x)  ........................................ (3)

Thus, according to (2) and (3), as the
embedding parameter q increases from 0 to 1,

(x,q) varies continuously from the initial
approximation y0(t) to the exact solution y(x).
Such a kind of continuous variation is called
deformation in homotopy.

By Taylor s theorem, (x,q) can be
expanded in a power series of q as follows:

m
0 m

m 1
(x,q) y (x) y (x) q




    ............ (4)
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where
m

m m
q 0

1 (x,q)y (x)
m! q 

 



.................... (5)

If the initial guess y0(x), the auxiliary linear
parameter L, the nonzero auxiliary parameter
h and the power series (4) of (x,q)
converges at q1. Then, we have under these
assumptions the solution series:

0 m
m 1

y(x) (x,1) y (x) y (x)



     ....... (6)

For brevity, define the vector:

n 0 1 2 ny (x) {y (x), y (x), y (x),..., y (x)} (7)

According to the definition (4), the governing
equation of ym(x) can be derived from the
zero-order deformation equation (1) by
differentiating the zero-order deformation
equation (1) m times with respective to q and
then dividing by m! and finally setting q  0,
we have the so called mth-order deformation
equation:

m m m 1 m m 1L[y (x) y (x)] hH(x)R (y (x))   

...................... (8)
where:

m 1
m m 1 m 1

q 0

1 N[ (x,q)]R (y (x))
(m 1)! q



 


 


 

...................... (9)
and

m
0, m 1
1, m 1


  

 

Note that the high- order deformation equation
(7) is governed by the linear operator L and
the term m m 1R (y (x)) can be expressed
simply by (8) for any nonlinear operator N.

According to the definition (8), the
right-hand side of equation (7) is only
dependent upon ym1(x). Thus, we gain y1(x),
y2(x), by mean of solving the linear high-
order deformation equation (7) one after the
other in order.

4.The First Approach for Solving
Fractional Integro Differential Equations
In this section we shall construct a series

solution corresponding to the fractional integro
differential equations of the form:

*D y(t) p(t)y(t) f (t)   
t

0
k(t,s)F(y(s))ds, t [0,1]

y(0)  
where f, k, F and p are given functions.
For this purpose, let:

*N[y(t)] D y(t) p(t)y(t) f (t)   
t

0
K(t,s)F(y(s))ds

The corresponding mth-order deformation
equation (8) reads:

m m m 1 m m 1L[y (t) y (t)] hH(t)R (y (t))   

............................. (10)
my (0) 0

One has:
m 1

m m 1 m 1
q 0

1 N[ (x,q)]R (y (x))
(m 1)! q



 


 


 

The corresponding homotopy series solution
is given by:

0 m
m 1

y(t) y (t) y (t)



  

It is worth to present a simple iterative
scheme for ym(t) to this end, let F(y(t))  y(t)

the linear operator L is chosen to be L 
d
dt



 ,

and 0y (t)   is taken to be an initial guess,
and in order to make a comparison with the
Adomain Decomposition method a nonzero
auxiliary parameter h  1 and an auxiliary
function H(t)  1 are taken. This is substituted
into (10) hence we have the recurrence
relation:

0y (t)   ............................................. (11)

1 *y (t) J [ D ( ) p(t) f (t)      
t

0
, K(t, s) ds] ......................... (12)

and for m  2
t

m m 1 m 1
0

y (t) J [ p(t)y K(t,s) y ds]
    .. (13)

Thus we gain y1(t), y2(t), y3(t), … . One after
one in order.
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5. Second Approach for Solving Fractional
Integro Differential Equations
The HAM which provides an analytical

approximate solution is applied to various
nonlinear problems, [Liao, 1992], [Liao,
1995], [Liao, 1997], [Liao, 2003], [Liao,
2004], [Liao, 2007], [Abbasbandy (a), 2008],
[Abbasbandy (b), 2008], [Abbasbandy (c),
2008], [Liao, 2009], [Hashim, 2009]. In this
section, we present a reliable approach given
in [Odibat, 2010] for the HAM. This new
modification can be implemented for integer
order and fractional order nonlinear equation.
To illustrate the basic idea for this new
algorithm we consider the following nonlinear
fractional integro differential equation.

*D y(t) p(t)y f (t) N(y), t 0     ..... (14)
where m 1 m    , N is a nonlinear operator
given by

t

0
N(y) K(t,s)F(y(s))ds 

p(t) and g(t) is a known analytic function and

*D is the Caputo fractional derivative of
order .

In view of the homotopy technique, we can
construct the following homotopy:

0 *(1 q)L[ (t,q) (t)] qhH[D (t,q)     
p(t) (t,q) N( (t,q)) f (t)]    ... (15)

Where q  [0, 1] is the embedding parameter,
h  0 is a nonzero auxiliary parameter,
H(t)  0 is an auxiliary function, 0 is an
initial guess of y(t) and L is an auxiliary linear

operator defined as L 
d
dt



 , when q  0

equation (15) becomes,
L 0[ (t,0) (t)]  = 0............................ (16)
Its obvious that when q  1, equation (15)

becomes the original nonlinear equation
(14).then as q varies from 0 to 1, the solution
y(x, q) varies from the initial guess y0(t) to the
solution (t,1) .the basic assumption of this
new approach is that the solution of equation
(15) can be expressed as a power series in q,

2
0 1 2q q ...        ..................... (17)

Substituting the series (17) into the homotopy
(15) and then equating the coefficients of the

like powers of q, we obtain the high- order
deformation equations

1 * 0 0 0L[ ] hH(D p(t) N( ) f (t))       

L 2[ ]  L 1 * 1 1[ ] hH(D p(t)     

0 1N( , ))  ................................... (18)

L ][ 3  L 2 * 2 2[ ] hH(D p(t)     

0 1 2N( , , ))  

L ][ 4 = L 3 * 3 3[ ] hH(D p(t)     

0 1 2 3N( , , , ))   
Where:
N 2

0 1 2 0 0( q q ....) N ( )        
2

1 0 1 2 0 1 2qN ( , ) q N ( , , )     
and

t
0 0 0

0
N ( ) k(t,s)A (s)ds,  

t
1 0 1 1

0
N ( , ) k(t,s)A (s)ds   

t
2 0 1 2 2

0
N ( , , ) k(t,s)A (s)ds    

Generally
t

n 0 1 2 n n
0

N ( , , ,....., ) k(t, s)A (s)ds     

where
n

i
n in

i 0 0

1 dA F( y ) , n 0,1, 2,...
n! d



 

 
   

  


The approximate solution of equation (14),
therefore, can be readily obtained,

0 1
q 1

y lim ...


       ...................... (19)

The success of the technique is based on the
proper selection of the initial guess 0 applying
the operator J .to both sides of equation (14)
give

km 1 (k)

k 0

ty(t) y (0 ) J (p(t)y)
k!

  


  

J (f (t) J (N(y(t)))  ............... (20)

Neglecting the nonlinear term J (N(y(t)) and

J (p(t)y) on the right hand side, we can use
the remaining part as the initial guess of the
solution that is
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km 1 (k)
0

k 0

t(t) y (0 ) J (f (t))
k!

  


    ...... (21)

and by solving equations (18) we get 1 , 2 ,

3 , …; respectively.

6. Illustrative Examples
In this section we will apply the two

approaches based on HAM presented in
section four and five to the linear/nonlinear
fractional integro-differential equation,
respectively:

Example (1):
Consider the following fractional integro-

differential equation
2 t 2.25 t(0.75) t

0

t e 6ty (t) y(t) e sy(s)ds
5 (3.25)

 
       



y(0) 0
where the exact solution is y(t)  t3.
And according to equations (11), (12) and
(13), we have the following approximations
y0(t)  0

2.25
0.75

1
6ty (t) J
(3.25)

      
3

1y (t) t
t0.75 2 t 0.75 t

2 1 1
0

1y (t) J (t e y (t)) J ( e sy (s) ds)
5


  

2y (t) 0
for m 3

my (t) 0
Hence we have got the exact solution y(t)  t3.

Example (2):
Consider the following nonlinear equation:

t x 2

0
D y(t) 1 e y (x) dx 
    ................... (22)

1)0( y
According to the second approach given

by section five and by equation (21) and with
h  1, H  1in equation (18), we have:

0 (t) y(0) J (1) 1 J (1)     

1 0 0(t) J (N ( ))  

2 1 0 1(t) J (N ( , ))   

3 2 0 1 2(t) J (N ( , , ))    

where:
t x 2

0 0 0
0

N ( (t)) e ( (x)) dx  

t x
1 0 1 0 1

0
N ( , ) e (2 (x) (x)) dx    

t x 2
2 0 1 2 0 2 1

0
N ( , , ) e (2 (x) (x) ( (x)) ) dx       



In order to avoid difficult fractional
integral, we can simplify the integration by
taking the truncated Taylor expansions for the
exponential term

x x x
2 6
2 3

e 1 x    

Following Fig. (1) shows the approximate
solution of (22) for   0.5, 1, which is
obtained after four iterations. The solution for
  1 is the only case for which we know the
exact solution as mentioned in [Mittal, 2008]
and our solution is in good agreement with the
exact values.

Fig. (1) : The approximate solution of
example (2) with the exact solution.
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Conclusion
In the paper we have taken two examples

the first example is the same as solved by
[Rawashedeh, 2005] using the collocation
spline method.He obtained the solution having
absolute error of order 104 and [Mittal, 2008]
by using the Adomain decomposition method
and the second example is nonlinear which is
the same solved by [Mittal, 2008].

Setting h  1 and H  1 in (10) and (18)
which gives the formulae used for solving
example (1) and (2) respectively gives the
same solution given by [Mittal, 2008] using
the Adomain decomposition method this
illustrates that the Adomain decomposition
method is indeed special case of the HAM.

The HAM provides us with a simple way
to adjust and control the convergence region of
solution series by choosing a proper value for
the auxiliary parameter h, auxiliary function
H(x), auxiliary operator L.
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(Homotopy analysis method)

t
*

0
D y(t) p(t)y(t) f (t) k(t,s)F(y(s))ds     ,

0 <  < 1

)Caputo fractional derivative( .

.


