Journal of Al-Nahrain University

Vol.13 (3), September, 2010, pp.138-148

Science

THE DISCRETE CLASSICAL OPTIMAL CONTROL PROBLEM OF A
NONLINEAR HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION
(DCOCP)

Jamil A. Ali Al-Hawasy

Department of Mathematics, College of Science, Al-Mustansiriyah University.
e-mail: Alhawasy20@yahoo.com.

Abstract

In this paper, we consider a continuous classical optimal control for systems of nonlinear
hyperbolic partial differential equations, with several equality and inequality state constraints. First,
the considered continuous classical optimal control problem is discretized into a discrete classical
optimal control problem by using the Galerkin finite element method in space and the implicit finite
difference scheme in time. The classical continuous controls are approximated by picewise
constants. Second the existence of a unique solution of the discrete state equations for fixed discrete
classical control is studied. Third, we develop the existence theory for optimality of the discrete
classical problem, and the discrete adjoint equations are developed corresponding to the discrete
state equations. Finally the necessary conditions and a picewise minimum principle are developed

for optimality of the discrete classical problem.

Introduction

During the last dictates, many researchers
([31, [5], [7], and many others), interested to
study the discretization for the continuous
relaxed optimal control problems for systems
defined by ordinary and partial differential
equations. At the beginning of this century the
discretization for the continuous classical
optimal control problem defined by semilinear
parabolic partial differential equations and
then the study of the obtained discrete classical
optimal control problem was studied by [4].

Since many applications in physics as the
problem of Electromagnetic waves, or the
problem of Dynamical elasticity lead to a
mathematical model represent by a classical
optimal control problems governed by
nonlinear  hyperbolic  partial  differential
equation, and since solving such problems
numerically needs the discritization of the
continuous optimal control problems to a
discrete classical optimal control problems, so
we interest in this paper to study the
discretization of a classical optimal control
problem for systems defined by nonlinear
hyperbolic partial differential equations with
several equality and inequality state
constraints.

In this paper and in order to give a
complete idea about our work, we saw it is
important to give at the beginning a
description for the continuous classical
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optimal control problem (CCOCP) which is
studied in[1], then we discretize this
continuous classical optimal control problem
to a discrete classical optimal control problem
(DCOCP). First we discretize the weak form
of state equations in the continuous problem
by using the Galerkin finite element methods
in space and the implicit finite difference
scheme in time (usually the Galerkin method
with the finite difference scheme is used
together to discretize such type of problems,
cause there are suitable and are wused
successfully [1],[3], & [4]), while the
continuous controls are approximated by
picewise constants with respect to an
independent partition of the space-time
domain. Then the existence of a wunique
solution of the discrete state equations for
fixed discrete classical control is proved. Also
we prove the existence theory of optimal
control for the discrete classical problem, and
we derive the discrete adjoint-state equations
corresponding to the discrete state equations.
Finally the necessary conditions and a
picewise minimum principle for optimality of
the discrete classical optimal control problem
are derived.

1.Description Of The Continuous Classical
Optimal Control Problem:-
In this section we describe the continuous
classical optimal control problem of a
nonlinear  hyperbolic  partial  differential



equations which is studied by [1], in order to
give a complete idea about how will descritize
the indicated continuous classical optimal
control problem (CCOCP) to a discrete
classical optimal control problem (DCOCP)
which is our aim in this work. So we begin
with Q<+ ¢ be an open and bounded region

with  Lipschitz ~ boundary['=0Q, and
let/=(0,7),0<T <, 0=QxI .The
nonlinear hyperbolic state equations are:-
v, tA@)y =f (x,t,y,u),nQ ... (1)
Y(,t)=0,InZ, oo, (2)
y(x,0)="(x),inQ,Z=Tx[0,T] ...... 3)
Y,(x,0)="(x), i Q ooovrren, 4)

where u =u(x,t), y =y, (x,t) is the state
which corresponds to the continuous classical
control u, A(t) is the 2™ order elliptic

differential operator, i.e.

At)y = —z ail:aij(x,t)%:l

i,j=l1 i j

The set of continuous classical controls is

ueW ,W c L*(Q),where

W =uel’Q)u(x.t)eU, aein O},
where U is a compact and convex subset of
* " (usually v=1orv=2),
the constraints on the state and control
variables y and u are

G, (u)= ngm (x,t,y,u)dxdt =0,1<m<p

G, (u)= jQ g, (x,t, y,u)dxdr <0,

p+l<m<yg

the cost function is
Min. Gy(u) = [ g,(xt,y(x.0),u(x,1))dxdi

where y =y, is the solution of (1-4), for the
control u,and g, (x,t,y,u) ,fori =1,2,..,q
are defined on O xR xU .

The continuous classical optimal control
problem (CCOCP) is to minimize the cost
function subject to u € W and the constraints
equality constraints G, (u)(wherel<m < p),
and the inequality constraints G, (1) (where

p+1<m<gq). A control satisfying all the
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above constraints is called admissible and the
set of admissible control is denoted by W, .

Also here, we denote by |.| the Euclidean
norm in R", by || ”w the norm in L*(Q), by
(.,.) and ||.|
L(Q) , by (.,.), and || the inner product

, the inner product and norm in

and norm in Sobolev space V =H,(Q), by
<.,.> the duality bracket between J and its
dual V", and by | .||Q the norm in L*(Q).

The weak form of the problems (1-4) is given
YveV, y(,t)eV,,ae.on [, by:

<Yov>+a(t,y,v)= ([t y(0),u(®),v),

................................ (5)
L0 T AT o T (6)
Y,0)=3" 00 Qoo (7)

where the initial conditions make sense if
y'eV , y'el’(Q), and a(t,.,.) is the usual
bilinear
suppose that a(¢,v,w) is symmetric and for

form associated with A(¢), we

some ¢,0,, Vv,w €V ,and t e, satisfies
2
|a(t, v, w)| <a, ||v| s

> and a(t,v,v) 20 v
2. Descritization And Description Of The
Discrete Classical Optimal Control

Problem:-

In this section we discritize the continuous
classical optimal control problem which is
considered in the pervious section. We
suppose for simplicity the operator af(t,.,.)1s
independent of ¢, the domain Q 1is a
M (n)

polyhedron . For every integer n, let {S/"}
be an admissible regular triangulation of Q
into closed d-simplices [8], {/”}7’" be a
subdivision of the interval / into N (n)
I7=[t]t],]
lengths Ar =T /N . Set Q,=8/"xI].
V,cV =H,(Q) be the space of continuous

intervals, where of equal

Let

piecewise affine mapping in Q. Let W " be
the set of discrete (blockwise constants)
classical  controls (piecewise  constants
classical controls), i.e.

w'=Ww=w" eW|w (x,t)=w, inQ,}
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The discrete state equations, for each v €V is
written in the form
(Z;l+] _Z;’V)+At a(y;ln’v):

AtU"@;,y;H,u;Lv),j::OJ,"wAf—li.(S)
yia—yi=Atz},, j=0,L.,N-1,..09)
VaV)=(0 V) s coeeeeeeeeeenes (10)
Zav)=( W) e (11)

where y° eV , y' e L*(Q) are given, and
y]’,’,z;’ eV, for j =0,1,..,N .
The discrete constraints on the control is

u" e ", and the constraints on the discrete
state and control are

G @)
and
G u")<eg) ,foreachm=p+1p+2,..,q

<g ,foreach m =1,2,..,p

where €, and &, are given numbers, tend to
zero as n goes to infinity.
The discrete cost is G, (u"), where the

discrete functionals G (u") 1s defined by:

N -1
G’Z (un) :AtZJng (x at;ay;l.;.]au;)dx 5
7=0

for each m =0,1,2,...,q .
The set of all discrete admissible classical
controls for the discrete optimal problem is
given by
W =u"ew": <g

= Ylm ?

G, @")
G,w")<&, . (p+1<m<q)}

(1<m <p),

The discrete classical optimal control
problem is to find (if it exists) u” €W ', such
that
Gyu")=min Gy w")

w"av
Now, suppose the function f is defined on
S/ x[}',’ xUxw"(i=12,.,.M)
w.r.t. (with respect to) y 7, and u; satisfies:-
Gty | < F )+ Bl
and
|f (x ’t; ’y;+]’u;)_f (x ’t; ’y]n ’u]n)

<L | y

continuous

2

n n

j+l yj
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where, j =0,1,...,N —1,x €Q,
F(x)=F(x,t])eL’(Q) and L represents

the Lipschtiz constant for any ; .

Form here and up and for brevity we will drop
sometimes the arguments ¢7 or /and x of the

n n

dependents variable y 7, z 7 ,u;
which this

variable, and the termsy;, z

and any other

terms contained independent

" u” of the

i %
functions which contained their.

The following theorem plays an important rule
in the study of the continuity of the discrete

functionals G (u")and also in the existence of
a discrete optimal control.

Theorem?2.1:
For any fixedj (0<j <N —1), and for
each controlu” eW ", the discrete state

equations (8-11) for sufficiently small A¢ , has
aunique solutiony ', =y " =(yg, ¥,V y)-

Proof:
For any fixed j (0<;<N -1), let

{v,i=1,2,.,M(n)} be a finite basis of
V (where i=12,..n

continuous piecewise affine mapping in
Q,with v, (x)=0 on the boundary I"), then

equations (8-11) for any i =1,2,...M , and

v, (x) . for are

n

YisZ;,Y a2 ;0 €V,, can be written in the

form
(Zr‘l+ _Zr‘l’vi)+Ata(y r‘l+ ’Vi)
D (12)
:t(f(tj sV Y )’Vi)’
Via =YV =AZT (13)
Gav)= "V, s e, (14)
Cov )=, e (15)
Rewriting (13), in the form
W YViaTY
Zj+]_]A—l‘J’ .................................. (16)

Substituting (16) in (12), we have
W Jav)+HAD ay faw;)
=i V)AL v+

AWy o)), (17)



Now, form the basis of V', using the Galerkin
method [9], we write

M M
n o__ 0 n o__ J
Yo _zckvk > YV _zckvk >
k=1 k=1
M M
no_ Jj+l n o__ 1]
Vi _zck Vis Zo _zdkvk >
k=1 k=l

M M
n __ J no_ J+l
z; = E djv,,and z 7}, = E dl™v,
k=1 k=1

where, ¢/ =c, (t!), and d] =d, (t]), for

each j =0,1,..., N are unknown constants.

Substituting y ¢,y 7,y ., z] ,z7,and z7,, in
equations (16,17,14,&15) we get

(respectively) the following nonlinear system
of ordinary differential equations

(A+(At)YB)C'" =AC’ + AtAD’ +
(AYbWCul) (18)

D”‘—A%(C’” —C7) e, (19)

AC  =€" o, (20)

AD® =€ oo (21)
where

A :(aik)MxM’ a; :(Vk ’Vi)’
B :(bik)MxM’ bik :a(t’vk’vi)’

JHr (g Jj+rN\T
CMX] _(c] ’cz a---acM 5

JHr _ J+r J+r j+r\T _
DMX] _(d] ,d2 a---adM ) ’ for r = 0,1 ,

b=b)yas b =(f CTC " ul)v,),
V=0 )yare’ =€ ys e =@y s
(e/=("v,)and e/ =(y',v,), for each
ik =12,...M).

Now, to solve the above nonlinear system, we
use the method which knows by the predictor
and corrector method in the numerical
analysis, as following. For predictor step we

set C/*'=C’ in the components b, of the

vector b in the right hand side of (18), hence
equations (18-21) become a linear system.

Form the assumptions on the operator
a(.,,.)we have the matrices A and B are

positive definite, then A4 +(At)*B is positive
definite, hence it is regular, then the above

system has a unique solution, i.e. solving
equations (18,20,21) w.r.t. j+1, for fixed
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j we get C’*' which substitutes in (19) to get
D™, (this procedure can be repeat it for each
j=0,1,..,N —1).

Second, in the corrector step we substitute
again C’"' =C’"" in the components b, of the

vector b in the right hand side (R.H.S.)of (18),
hence equations (18-21) become again a linear
system, and by the same above way the
indicated equations has a unique solution
C’/*', which substitutes in (19) to get D’*,
(also this procedure can be repeat it for each
j=0,1,..,N —1). The above steps can be
expressed by the following iterative method to
solve the corrector step, i.e. equations (17&
16) can be expressed respectively

(I+1) 5 I+
(y ;+]’Vj)+(At) (l( y ;+]’Vi)
=(y;.v,)+AL(z v+

1+1)

(
A,y Jau))v,), (22)

and
(1+1)
(/+1) no_ "
P R (23)
At
. (1+1)
From equation (23) we see that =z 7,

(I+1)
depends on y

n
Jj+l

which is obtained from

(22), 1.e. the above iterative method is just for
(I+1)
¥ ., hence (22) also can be expressed as
(1+1) ()
y =h(y)
where [/ =0,1,... refer to the numbers of the
iterations and
(I+1) (1+1) (1+1) (1+1)
A (5 S O A I
and
(1+D) (+1)  (1+D) (1+1)
V=YV 6V e VN

(I+1)
Now, let y

(22) ,i.e.

(I+1)
and y

n n

are the solutions of
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(I+1) (7+1)

(y /+1’v )+(At) a(y /+1’v )
=i v)+AL(z]v,)+

(1)
2 n n n
(A (F @],y opu;)v,), (24a)
and

(1+1) (1+1)

(y /+1’v )+(At) a(y /+1’V )
= () )+ AL )+

)
(A (F @,y ul ),
Subtracting (24a) from (24b), substituting

(/+1) (1+])
v, =y -y
we get
(I+1)
(y 7‘+1_
(I+1)
a( y

(24b)

n

" in the obtained equation,

+]’

(I+1)

(1+1) (7+1) 5
2 v )+ (Ar)

y 7‘+19 y 7‘+1_
(+1) (I+1) (I+1)
y 7+19 y 7‘+1_ y ?+1):(At)2
) (l+1) (I+1)
(f(y ]+17u ) f(y ]+17u ) -y ?+1)

n p—
Jj+l1

The 2™ term in the L.H.S. (left hand side) of
the above equations is positive (from the
assumptions on a(.,.)), using the Lipschitz
condition on the f in the R.H.S. of the
equation, then using the Caschy-Schwarz
inequality in R.H.S. of the obtained equation,
the above equation becomes

(I+D (7+1) (I+D) 7+
='n n ='n
(y JHIT Y G4 Y e Y ]+1)<(AI)L
(1) ) (I1+D) (I+1)
n ="n n
J/J+1 Yo+ || Y j+— Y j+
0 0
=
2
(lil)n _(1+1) (At)zL
Yo oj+1= Y g = o
0
(l_)n (l)n (lil)n (1+1)n
Y j+17 ) j+1 Yo oj+1— Y 4l
0 0
=
(11]),, (1+1)n () (l)n
Y j+]_y Jj+l _ay]+] yj+] 5
0 0
where o = (AO;)ZL
=
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(1) ()

n
_OC ]+] y Jj+l

‘h(y ]+]) h(y ]+])
1.e. the function h

(1)
the sequence {y"}
(1+1) (1+1)

h(y )=y ell,
(1)
sequence {y"} of the above iterative method

0
1S contractive, and since
n Le.

contain 0,

for each [, then the

converges to some point y €[] [2].

3. Existence Of A Discrete Classical
Optimal Control:-
In order to study the existence of a discrete
classical optimal control, we suppose in
addition to the above assumptions, that the

function g (x,¢7,y7,u;), (Vm=0,1,...,q9)is
defined on Qxlj',’ xS xW" (Vi=1,.,M,
&Vj=0,1,...,

for fixed x and j, measurable w.r.t. x for

N ), continuous w.r.t. y; &u;

fixed y;’ &u;’,and Vx eQ, j=01.,N
satisfies
lgn Gty )| <G () +7, ()

where G/ (x) =G/ (x,t!) e L*(Q), ¥,, 20..

Lemma 3.1:

The operator u” > y" =y, is continuous.
Proof:
Let
u' :(“(;l’uln’ Uy )
k
—(uo ,u] yeenslyr 1)

y :(yoayla aylr\ll_l)a
v =y ey,

z —(Zo’ LowsZ )

and

nk

Z N

- (Z 0 ] PEERD)

We want to prove that if 1™

nk n
=y =Y

want to prove if u’"

—>u" as k — oo,
:yu",, as k »> oo, 1.e. we

Vj

then y:"k
—>uj’7, , as k —> oo,

nk n . .
then y" —>y7,Vj, as k —>o. We wil

prove it
follows:-

by mathematical induction, as



First, and from the initial conditions of the
(14), and (15), and the projection theory that

vyt >yl and 2" >z, as k > .
that

—>z'7as k — o, and we

Second: assume for any fixed j,
y* >y, and 2

shall prove that y 7., > v 7., as k — .

]+]

Let yj+] :h(yj ’Z U ’yj+]) and
]+] _h(y] =g ’ J ’y]+]) then

||y]+] yj+]

AR L TCRIES RN |
<
||h(y;k’z;k’u;k’y]+]) h(y] 1= ’ J ’y]+])|
AR B TC S u;,y;+,>|0
Since
Wz y ) h(y Lzl )
as k — o, l.e
[ACHERRTR S EV TGRSR |

<g —0, a8k >0

Then
||y]+] ]+] _OC”_)/]H y;l+] 0+8k
=
||y]+] ]n+] 0o l—OC k —>©
-
y]H —>Yi.a8 k >0
-

v oy,

1.e. the operator u” > y " 1s continuous.

=Y
Lemma 3.2:

The functional G, (u") (for each
m=0,1,...
L*(Q).

Proof:
For each m (m =0,1,..

,q ) 1s continuous w.r.t. " on

..q ), we have

N -1
Grw") =AY [gn(et),y ) uldx

j=00Q
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From the assumptions on g, , Lemma 3.1, and
1.2 [3], the
[enGe.t),yyul)de s continuous w.r.t.

Proposition n functional

y;and uj, for each j, and for eachx € Q.
Then G, ") 1s continuous w.rt. u" on
L*(Q).

Lemma 3.3:
If the function f is Lipschitizian w.r.t.

y"and u", the discrete controls u"and u"
are bounded in L*(0), yi,
and(y,); =y, =y +6y; (with &>0)
are the corresponding discrete  states
solutions to the discrete controls u; and
@.); =u, =u; +€bu’, respectively (for
each j =0,1,..., N ), then
2
5.y, Scsz|
and
2
0.2) . 3082”&1" ,
Or
2 2
agyl 1 SC s and | 5&.2] 0 _
Proof:

From the discrete state equations (8-11),
we get (for j =0,1,...,N —1)

(SSZ;H & ]’V)+Ata( y;l+],V)
= At(f (yj+] +5£y;+]’u;l +851/l;l),V)

FAL (V05U )V )5 v, (25)
0.7, =0.y] =A6.Z7 1, o, (26)
0.0 =0,20 =0, ceoiiiiiiiiicene (27)
In the all next steps we will use ¢, L', and

L for various constants.

Now, substituting v =6,z7, in (25), using
Lipschitiz property w.r.t. y"and u”, then

rewriting the first term in the obtained
equation in another way, we get

| 8], -1 8250 +] 828+
+At a(8,y}.,, Z?H)SL’SZAZ‘ ||5u',’ ’
(aeyjﬂ SSZJH )
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<L'e’At ||5u”||2+LAt LAt)z 2 6,2 (2)+
Since oo ]” s ]” Y 8.y] |] +(c —LN)JZ(; 8.Y —0.Y] |]2 <
ci((éAty; ]a ((S:Zyji ’6iyz+,]) 8.y}) L’ngt]]i”Su J||z +LAt;Z_](;( 5.y ]2 n z)
and SszL’”&t””; +LAtIZ_:;( 3.; ]2
i

a(5 y] 0 gy] ]) a(5 YJ Sy])
—_(At) a(észu »Oe J+1)+2Ata( Sy?ﬂ’égzyﬂ)

Then

At a(8,y'.1,6.2;,,)

=3[a(8,y}.1,6.y}.) —a(8,y],6,y]) +

a(6,y}, —6.y,6,.y} —6.y])] (29)

By substituting (29) in the L.H.S. of (28),
summing both sides of the obtained equation
from j =0toj =/ —1, using the assumptions
on a(.,.), and the initial conditions (27), we

get
2
8 _]+1 |0
|| 5 -1}
J
SL’ngtZ”&t;’” +
o) 6o
But
2 2 2
Syl <28, -6 +2f6r |
and
6,211 < ,

Substituting these inequalities in (30), we have
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where ¢ =min(1,%) in the L.H.S. of (31).

Now, choosing Af <%, then the 2" & the 4"

terms in the L.H.S. of (31) become positive ,
and (31) becomes

= 5gy}’]2 < “ve| 8.y, |,2
2 ! n 2 1_] n 2 n 2
<e’L ||5u ”Q +LAtJZ(;( 0.y, ] 0,7 )

—

2 2
oo,

/-1
LAY (|6
j=0

3.y,

2
n
6.zj||)

2
n
=Yi,

By using the discrete Gronwall’s inequality
[6], we get that

3.y,

2 2 2
|] <ce’L ’||5u 4 ”Q <cg? ||5u 4 ”Q

3.y,

2 2
| <cg? ||5u 4
! 0

2
o],

Since u”" and u'" are bounded in L*(Q), then
the above inequality become

T T . (32a)
and
D e (32b)
Theorem 3.1:

Assume that W /' #¢, W"is compact, f
is defined by

f(x’tj y,] ])

=10t 7y i)+t y G u;
such that



I Get) y | < E G+ By |- B 20,
[=12,with F, e }(Q),

(for m =1,2,...,p) is independent on u",

for

n

Em

n

8o
convex w.r.t. (y",u"), then there exists a
classical optimal control.

and g, (for m=p+1,p+2,..,q9) are

Proof:

Since W " # ¢, then there exists u" eW ",
such that
HI
and
G ru")<e) ,form=p+1l,p+2,..q9

n
Im

<g' Lform=12,.,p

But the operator u”" > y " = y:,, 1S continuous

(Lemma 3.1), the functionals G, (u")are
continnous w.rt. wu"and y" for each
m=0,1,..,g (Lemma 3.2 ), and W"is

compact, then W ;' is compact.
So we get G (u")1s a real continuous function
defined on the compact set W, then there

exists an optimal control, i.e. there exists
u" eW /], such that

Gy@")=minGyu")
u" v |

4. The Necessary Conditions For Discrete
Optimality:-
In order to state the necessary conditions
for discrete classical optimal control, we

suppose in addition that the functions f, f,, f, ,
8>8 > &, are defined onS xI7 xR xW ",

(where U'is an open set containing the
compact setU ), measurable w.rt. x, and

continuous w.r.t. y; &u;, and satisfy( for
each j =0,1,...,N )

f, (.t y 5 u;) <L
fu(x’tj ’yj’uj)

g:fly (x’t]n’y]n’u]n)
for m =0,1,...,q

<L’

<G L)+ Y |y;

2

and
g:qu(x’t]n’y]n’u]n)
for m =0,1,...,q

<G+, |0

2

where
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G, eLZ(Q),(x,t;,y;,u;)eSi” xlj’,’ xR xW"
withyy,, 20, and y,,, 20, m =0,1,...,q
Lemma 4.1:

Dropping the index m, the general
discrete classical adjoint state

¢, =¢" =@ ,9",....0y_,) 1s given by (for
j=N-1N -2,.,0):

(W;H _l//]n v ) + At a(q); >V )

:At(q)]’,’fy (y;+],u;)+ ....................... (33)
g, (yiu;)v), ver,
q)}',’ﬂ —q)}’,’ = At 1//;’ ...................................... (34)
Py =Wy =0 o (35)
where (]);,l//;’ eV, , foreach j =0,1,..,N
The directional derivative of G is given by:
DGn(un’u”’l _un)
:limG(u +eou")-Gw")
£—>0 Fo
N -1
:AtZ(Hu”(tjf’,y;+],q>]f’,u;’),5u]’.’) ........... (36)
j=0

where u" . u"" eWw ", 5u; :u]’,” —uj, and the
Hamiltonian H" is defined by:
Hn(x’t;’y;lﬂ’(p;’u;)

=0 (ot y i u)+g  (xut,y i ul)
for each j =0,1,....N —1

Proof:

By using equation (25), with v =¢, and
then using the Frechét derivative of the
function f/ in R.H.S. of the obtained equation
(which it exists from the assumptions on
f [10]), then multiplying both sides by Af,
summing over j (from j =0 to j =N —1),
using (32a) & (32b), we get

N0,z , —0.z",07) Nl
< j+l eTjoYy n n
+At ) a(6.y".,,9))
JZ(; At JZ(; JH T
N -1
=AY (f, 6.0 )+ Ef,0u) 9))+
j=0
+0, (&) |6u" ||Q ............................ (37)
where O,(¢)—>0, a €—0, and
O,(e)=|0.y" , TCE |5u" 0
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Substituting v =6,y7,, in (33), then

multiplying both sides by Az, summing over j
(fromj =0toj =N —1), we get
& (l//]r‘l+] _l//]n ’5£y ;'H)

2 A

=0

N -1

*81 Y a8y ])

~.

n—l

ALY (9

j=0

= ya gy]+])+Atz(gy’ y;+]) (38)

Jj=0

Now, by subtracting (38) from (37), we get

& ](SSZ]H 5 : n & ]( ]+] l//]’ y;‘l+])
j=0 j=0

N -1
=AtZ(Sfu(Su}’,¢,7)—At2(g;’,5gy,’ll)

Jj=0 j=0

+0,(e)|6u" R — (39)
Now, for given values y;’ ,j =0,1,.,N ,ina

vector space, we will define the following
functions a.e. on [ ,

yi@)=y;,tel, vj=0,l..,
yi@)y=yj,tel;,Vvj=0,l..,

N,
N

y ! (t):=the functions which is affine on each
1 ]” , such that

-1,

yi(t;)=yj,foreach j =0,l,..,N .

By using these notations for y,¢,z &y in the

1 and the 2™ terms of the L.H.S. of (39), we
have

N24 (652 ;‘l+l - 662;‘1 5¢; )
= At
N CERRRY (40a)
and
& (l//]r‘l+] _l//]n ’gey;lﬂ)
2 A
T
=], .6,y 1t (400)

Now, by using the discrete integration by parts
twice to the integral in (40a), i.e.
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=[Gz 1.() )t +(B,2 5. 80) - (820 8))
= [ (8.22.(¢")¥dt . (from (27) and (35))
[ .y 2yt , (from (26) and(34))

= [0 @y 1w -y W) B,y )

= [0 @y .Yt , (from (27) & (35))
— R.H.S. of (40b)

Substituting theses results in the L.H.S. of
equation (39), then this side becomes zero, and
equation (39) gives

N -1 N -1
ALY (gl 8.y 0.) =AY (ef 6ul 9 )+
Jj=0 Jj=0 ...(41)
0,(&)||6u"
On the other hand, we have that (since the
Frechét derivative of the function g exists,

from the assumptions on this function [10])
G 'u;)-G" ")

............. (42)

N -1
=AY [ (g]6.v ], +eg,du))dx
j=0

+0,(e)|6u"

where O,(€) >0,as € >0

Now, by substituting (41) into (42) , we have
G '(u;)-G" ")

N -1
=eAty. jQ (@1f, +g.)Su’ )dx
j=0

+0,(e)|6u"
where 0,(€)=0,(6)+0,(e) >0,as € >0

Dividing by € the both sides of (43) , taking

the limit when € — 0, we get

DG"(u" u" —u")=At

N -1

Z(%’fu sy sty )+ &, ]y suy ), 0u)
N —

= At Z(H 7,y 7000 u)),0ul) .. (44)

j=0



Lemma 4.2:
The operator u” > ¢" = q)u",l 1S continuous.

Proof:
The proof is similar to Lemma 3.1.

Lemma 4.3 :
The  operator u" DG u"),

continuous w.r.t. u", foreach 0<m <gq .

1S

Proof:
The proof is similar to Lemma 3.2.

Theorem 4.1:

If u” eW " is an optimal classical control
of the considered problem, W " is convex,
then u” (classical weakly) extremal, i.e. there
multipliers A" €[ , (for

m =0,l,...,q ) with A7 20, and A >0, ( for

exists each

A

q
m=p+1,p+2,..,q) satisty z =1, such
m=0

that

q
Y ADG) " ~u") > 0,5 < ", (45)
m=0

and
AGru")—¢
(transversity condition)

"1=0,form=p+1,p+2,..4q

m

q q
where ¢ => gy, and g! => Alg,, in
m=0 m=0
q
the definition of H, = ZH;“ .
m=0

If W " has the form
wr" :{u’:u]’,” :u]’." eU,j=01.,N -1},
with U <l , then the above relations are

equivalent to the following minimum principle
in blockwise form:

@S Viau; ) +g, (viu;)uy)
=min(¢;f, (v j.u;)+8, b iul)u")
Vi =0,1,...N -1, andVi =1,2,...M , ....(47)

Proof:

From Lemma(3.2), the functionals

G, "), for each m =0,1,...,q i1s continuous

w.rt. u” eW " . From the above assumptions
and Lemma 4.3, the functionals

DG u")=DG " u" ~u"),

m =0,1,...,q is continuous w.r.t. (u",u"") and

for each
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n

linear w.r.t. u' —u" , then the functionals
G, (u") 1s k-differentiable for every integer k,

then by Khun-Tanger-Lagrange Theorem
[10], there exist multipliers

Ay 20,4 ell [(form =1,2,...,p),
Ar>20,(for m=p+Lp+2,..,9),

and

with
q

2,

m=0

equality (46) are satisfy.

A

=1, such that inequality (45), and

Let we use Lemma 4.1, then inequality (45)
for each u;” eW " becomes:

N-1 ¢q
WD IP ) MEHIAGIFRED

=0 m=0
+g:w (t]n’y]n’u]n)](u]m —u;)dx >0
=

N -1 q
ALY [ IS0 Yy )
j=0

m=0

q
Qg @)y i DI —u)dx 20

m=0

Set
q
m=0
then

N -1
ALY [ L00F,y )+ g, € ] )]
Jj=0

q
=Y Angn, @l yiul),

m=0

@ —ul)dx 20, Vul"eW" (48)
=

N -1
ALY @O, ]y u) )+
7=0
g,y ul )l —ul)=0,vul" eW", (49)

To prove (49) is equivalent to the minimum
principle blockwise form (47), we define

wr" :{u’:u]’,” :u}" eU,j=0,1.,N -1},
with U clJ .

Let u;” =u;, forall j exceptoncesay k ,ie.
u." #u, , then (49) becomes

@S Y ) T8,y u )uy)
=min(@(/, (] v L)+ 8, (1 )

Since  kis arbitrary, then
Jj=0,1,...,N -1, we have

for each
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@, @]y u;)+g, @7,y u;)u;)

= min(@}, ¢,y [yt )+, oy ')
Then
i=12,...M , we have
@1, @]y u;)+g, @,y u;)u; ),
=min(@[/, (¢, oul) + g, ]y ] ) )u),

The proof of the minimum principle blockwise
form (47) 1s equivalent to (49), follows
conversely form the above steps.

for each j=0,1,.,N -1, and

5.Conculusions

The finite element method associated with
the implicit finite difference scheme used
successfully to discretize the continuous state
and its adjoint equations in the continuous
classical optimal control problem to a discrete
state and adjoint equations, while the Grank-
Nicolson finite difference method or the 8-
finite difference method with 0< 6 <1 failed
to give a suitable discretization for the adjoint
state equations.

The Galerkin method is suitable to solve
the nonlinear hyperbolic partial differential
equations (discrete state equations) associated
with fixed discrete classical controls.

The existence theory for optimality of a
discrete classical optimal control problem is
developed so as the necessary conditions and a
picewise minimum principle for optimality.
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