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Abstract
In this paper, we consider a continuous classical optimal control for systems of nonlinear

hyperbolic partial differential equations, with several equality and inequality state constraints. First,
the considered continuous classical optimal control problem is discretized into a discrete classical
optimal control problem by using the Galerkin finite element method in space and the implicit finite
difference scheme in time. The classical continuous controls are approximated by picewise
constants. Second the existence of a unique solution of the discrete state equations for fixed discrete
classical control is studied. Third, we develop the existence theory for optimality of the discrete
classical problem, and the discrete adjoint equations are developed corresponding to the discrete
state equations. Finally the necessary conditions and a picewise minimum principle are developed
for optimality of the discrete classical problem.

Introduction
During the last dictates, many researchers

([3], [5], [7], and many others), interested to
study the discretization for the continuous
relaxed optimal control problems for systems
defined by ordinary and partial differential
equations. At the beginning of this century the
discretization for the continuous classical
optimal control problem defined by semilinear
parabolic partial differential equations and
then the study of the obtained discrete classical
optimal control problem was studied by [4].

Since many applications in physics as the
problem of Electromagnetic waves, or the
problem of Dynamical elasticity lead to a
mathematical model represent by a classical
optimal control problems governed by
nonlinear hyperbolic partial differential
equation, and since solving such problems
numerically needs the discritization of the
continuous optimal control problems to a
discrete classical optimal control problems, so
we interest in this paper to study the
discretization of a classical optimal control
problem for systems defined by nonlinear
hyperbolic partial differential equations with
several equality and inequality state
constraints.

In this paper and in order to give a
complete idea about our work, we saw it is
important to give at the beginning a
description for the continuous classical

optimal control problem (CCOCP) which is
studied in[1], then we discretize this
continuous classical optimal control problem
to a discrete classical optimal control problem
(DCOCP). First we discretize the weak form
of state equations in the continuous problem
by using the Galerkin finite element methods
in space and the implicit finite difference
scheme in time (usually the Galerkin method
with the finite difference scheme is used
together to discretize such type of problems,
cause there are suitable and are used
successfully [1],[3], & [4]), while the
continuous controls are approximated by
picewise constants with respect to an
independent partition of the space-time
domain. Then the existence of a unique
solution of the discrete state equations for
fixed discrete classical control is proved. Also
we prove the existence theory of optimal
control for the discrete classical problem, and
we derive the discrete adjoint-state equations
corresponding to the discrete state equations.
Finally the necessary conditions and a
picewise minimum principle for optimality of
the discrete classical optimal control problem
are derived.

1.Description Of The Continuous Classical
Optimal Control Problem:-

In this section we describe the continuous
classical optimal control problem of a
nonlinear hyperbolic partial differential
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equations which is studied by [1], in order to
give a complete idea about how will descritize
the indicated continuous classical optimal
control problem (CCOCP) to a discrete
classical optimal control problem (DCOCP)
which is our aim in this work. So we begin
with d • be an open and bounded region
with Lipschitz boundary   , and
let (0, )I T , 0 T   , Q I  .The
nonlinear hyperbolic state equations are:-

( ) ( , , , )tty A t y f x t y u  ,inQ .......... (1)
( , ) 0y x t  ,in , ................................... (2)

0( ,0) ( )y x y x ,in , [0, ]T   ...... (3)
1( ,0) ( )ty x y x , in  ......................... (4)

where ( , )u u x t , ( , )uy y x t is the state
which corresponds to the continuous classical
control u , ( )A t is the 2nd order elliptic
differential operator, i.e.

, 1

( ) ( , )
d

ij
i j i j

yA t y a x t
x x

  
   

   


The set of continuous classical controls is
Wu , )(2 QLW  ,where

2{ ( ) ( , ) , a.e.in }W u L Q u x t U Q   ,
where U is a compact and convex subset of

v• (usually 1v  or 2v  ),

the constraints on the state and control
variables y and u are

0),,,()(   dxdtuytxguG
Q mm , pm 1

0),,,()(   dxdtuytxguG
Q mm ,

qmp 1

the cost function is
Min. 0 0( ) ( , , ( , ), ( , ))

Q
G u g x t y x t u x t dxdt 

where uyy  is the solution of (1-4), for the
control u , and ( , , , )ig x t y u  , for 1, 2,...,i q
are defined on Q R U  .
The continuous classical optimal control
problem (CCOCP) is to minimize the cost
function subject to u W and the constraints
equality constraints ( )mG u (where pm 1 ),
and the inequality constraints ( )mG u (where

qmp 1 ). A control satisfying all the

above constraints is called admissible and the
set of admissible control is denoted by AW .

Also here, we denote by . the Euclidean

norm in nR , by .


the norm in ( )L  , by

(.,.) and
0

. the inner product and norm in
2 ( )L  , by 1(.,.) and

1
. the inner product

and norm in Sobolev space 1
0 ( )V H  , by

.,.  the duality bracket between V and its
dual *V , and by .

Q
the norm in 2 ( )L Q .

The weak form of the problems (1-4) is given
v V  , Vty )(., , , a.e. on I , by:

, , , ( , ( ), ( )),tty v a t y v f t y t u t v    ,
................................(5)

0(0)y y , in  , .............................. (6)
1(0)ty y , in  ................................(7)

where the initial conditions make sense if
0y V , 1 2 ( )y L  , and ( ,.,.)a t is the usual

bilinear form associated with ( )A t , we
suppose that ( , , )a t v w is symmetric and for
some 1 2, , ,v w V  , and t I , satisfies

2 1 1
( , , )a t v w v w , and 2

1 1( , , )a t v v v ,

2. Descritization And Description Of The
Discrete Classical Optimal Control
Problem:-
In this section we discritize the continuous

classical optimal control problem which is
considered in the pervious section. We
suppose for simplicity the operator ( ,.,.)a t is
independent of t , the domain  is a
polyhedron . For every integer n , let ( )

1{ }n M n
i iS 

be an admissible regular triangulation of 
into closed d-simplices [8], ( ) 1

0{ }n N n
j jI 

 be a

subdivision of the interval I into ( )N n
intervals, where 1: [ , ]n n n

j j jI t t  of equal

lengths /t T N  . Set : n n
ij i jQ S I  . Let

1
0 ( )nV V H   be the space of continuous

piecewise affine mapping in  . Let nW be
the set of discrete (blockwise constants)
classical controls (piecewise constants
classical controls), i.e.

{ ( , ) in }n n
ij ijW w w W w x t w Q   
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The discrete state equations, for each nv V is
written in the form

1 1

1

( , ) ( , )

( ( , , ), ), 0,1,..., 1

n n n
j j j

n n n
j j j

z z v t a y v

t f t y u v j N
 



   

  
…(8)

1 1 , 0,1,..., 1n n n
j j jy y t z j N      , ....(9)

0
0( , ) ( , )ny v y v , ..................................(10)

1
0( , ) ( , )nz v y v , ...................................(11)

where 0y V , 1 2 ( )y L  are given, and
,n n

j j ny z V , for 0,1,...,j N .
The discrete constraints on the control is
n nu W , and the constraints on the discrete

state and control are

1( )n n n
m mG u  , for each 1, 2,...,m p

and
2( )n n n

m mG u  , for each 1, 2,...,m p p q  

where 1
n
m and 2

n
m are given numbers, tend to

zero as n goes to infinity.
The discrete cost is 0 ( )n nG u , where the
discrete functionals ( )n n

mG u is defined by:
1

1
0

( ) ( , , , )
N

n n n n n
m m j j j

j

G u t g x t y u dx





   ,

for each 0,1, 2,...,m q .
The set of all discrete admissible classical
controls for the discrete optimal problem is
given by

1

2

{ : ( ) , (1 ),

( ) , ( 1 )}

n n n n n n
A m m

n n n
m m

W u W G u m p

G u p m q

    

   

The discrete classical optimal control
problem is to find (if it exists) n n

Au W , such
that

0 0( ) min ( )
n n

A

n n n n

w W
G u G w




Now, suppose the function f is defined on
n n n
i jS I W   ( 1, 2,...,i M ) continuous

w.r.t. (with respect to) n
jy , and n

ju satisfies:-

1 1( , , , ) ( )
j

n n n n
j j j jf x t y u F x y   ,

and

1

1

( , , , ) ( , , , )n n n n n n
j j j j j j

n n
j j

f x t y u f x t y u

L y y







 

where, 0,1,..., 1j N  , x  ,
2( ) ( , ) ( )n

j jF x F x t L   and L represents
the Lipschtiz constant for any j .

Form here and up and for brevity we will drop
sometimes the arguments n

jt or /and x of the

dependents variable n
jy , n

jz , n
ju and any other

terms which contained this independent
variable, and the terms n

jy , n
jz , n

ju of the
functions which contained their.

The following theorem plays an important rule
in the study of the continuity of the discrete
functionals ( )n n

mG u and also in the existence of
a discrete optimal control.

Theorem2.1:
For any fixed j (0 1)j N   , and for

each control n nu W , the discrete state
equations (8-11) for sufficiently small t , has
a unique solution 0 1( , ,..., )n

n n n n n
Nu

y y y y y  .
Proof:

For any fixed j (0 1)j N   , let
, 1, 2,..., ( )iv i M n be a finite basis of

nV (where ( )iv x ,for 1, 2,...,i n are
continuous piecewise affine mapping in
 ,with ( ) 0iv x  on the boundary  ), then
equations (8-11) for any 1, 2,...,i M , and

1 1, , ,n n n n
j j j j ny z y z V   , can be written in the

form
1 1

1

( , ) ( , )

( ( , , ), ),

n n n
j j i j i

n n n
j j j i

z z v t a y v

t f t y u v
 



 


................(12)

1 1
n n n
j j jy y t z    , .............................. (13)

0
0( , ) ( , )n

i iy v y v , ................................. (14)
1

0( , ) ( , )n
i iz v y v ,................................... (15)

Rewriting (13), in the form
1

1

n n
j jn

j

y y
z

t








, ..................................(16)

Substituting (16) in (12), we have
2

1 1

2
1

( , ) ( ) ( , )

( , ) ( , )

( ) ( ( , , ), ), (17)

n n
j i j i
n n
j i j i

n n n
j j j i

y v t a y v

y v t z v

t f t y u v
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Now, form the basis of nV , using the Galerkin
method [9], we write

0
0

1

M
n

k k
k

y c v


 ,
1

M
n j
j k k

k
y c v



 ,

1
1

1

M
n j
j k k

k
y c v



 , 0
0

1

M
n

k k
k

z d v


 ,

1

M
n j
j k k

k
z d v



 , and 1
1

1

M
n j
j k k

k
z d v




where, ( )j n

k k jc c t , and ( )j n
k k jd d t , for

each 0,1,...,j N are unknown constants.

Substituting 0
ny , n

jy , 1
n
jy  , 0

jz , n
jz , and 1

n
jz  in

equations (16,17,14,&15) we get
(respectively) the following nonlinear system
of ordinary differential equations

2 1

2 1

( ( ) )

( ) ( , ) (18)

j j j

T j n
j

A t B C AC tAD

t b V C u





     


 

1 11 ( )j j j
tD C C 

  , ........................ (19)
0 0AC e  ............................................. (20)
0 1AD e ............................................. (21)

where
( )ik M MA a  , ( , )ik k ia v v ,
( )ik M MB b  , ( , , )ik k ib a t v v ,

1 1 2( , ,..., )j r j r j r j r T
M MC c c c   

  ,

1 1 2( , ,..., )j r j r j r j r T
M MD d d d   

  , for 0,1r  ,

1( )i Mb b 


, 1( ( , ), )T j n
i j ib f V C u v


,

1( )i MV v 


, 0 0
1( )

j Me e  , 1 1
1( )i Me e   , 

( 0 0( , )i ie y v and 1 1( , )i ie y v , for each
, 1, 2,...,i k M ).

Now, to solve the above nonlinear system, we
use the method which knows by the predictor
and corrector method in the numerical
analysis, as following. For predictor step we
set 1j jC C  in the components ib of the

vector b


in the right hand side of (18), hence
equations (18-21) become a linear system.
Form the assumptions on the operator

(.,.)a we have the matrices A and B are
positive definite, then 2( )A t B  is positive
definite, hence it is regular, then the above
system has a unique solution, i.e. solving
equations (18,20,21) w.r.t. 1j  , for fixed

j we get 1jC  which substitutes in (19) to get
1jD  , (this procedure can be repeat it for each
0,1,..., 1j N  ).

Second, in the corrector step we substitute
again 1 1j jC C  in the components ib of the

vector b


in the right hand side (R.H.S.)of (18),
hence equations (18-21) become again a linear
system, and by the same above way the
indicated equations has a unique solution

1jC  , which substitutes in (19) to get 1jD  ,
(also this procedure can be repeat it for each

0,1,..., 1j N  ). The above steps can be
expressed by the following iterative method to
solve the corrector step, i.e. equations (17&
16) can be expressed respectively

( 1) ( 1)
2

1 1

( 1)
2

1

( , ) ( ) ( , )

( , ) ( , )

( ) ( ( , , ), ), (22)

l l
n n
j i j i

n n
j i j i

l
n n n
j j j i

y v t a y v

y v t z v

t f t y u v

 

 





 

  



and
( 1)

( 1)
1

1

l
n nl
j jn

j

y y
z

t











 ................................(23)

From equation (23) we see that
( 1)

1

l
n
jz





depends on
( 1)

1

l
n
jy



 which is obtained from
(22), i.e. the above iterative method is just for
( 1)

1

l
n
jy



 , hence (22) also can be expressed as
( 1) ( )

( )
l l
y h y



where 0,1,...l  refer to the numbers of the
iterations and

( 1) ( 1) ( 1) ( 1)

0 1( , ,..., )
l l l l

n n n n
Ny y y y

   

 ,
and

( 1) ( 1) ( 1) ( 1)

0 1( , ,..., )
l l l l

n n n n
Ny y y y

   

 .

Now, let
( 1)l

ny


and
( 1)l

ny


are the solutions of
(22) ,i.e.
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( 1) ( 1)
2

1 1

( )
2

1

( , ) ( ) ( , )

( , ) ( , )

( ) ( ( , , ), ), (24 )

l l
n n
j i j i

n n
j i j i

l
n n n
j j j i

y v t a y v

y v t z v

t f t y u v a

 

 



 

   


and

( 1) ( 1)
2

1 1

( )
2

1

( , ) ( ) ( , )

( , ) ( , )

( ) ( ( , , ), ), (24 )

l l
n n
j i j i

n n
j i j i

l
n n n
j j j i

y v t a y v

y v t z v

t f t y u v b

 

 



 

   



Subtracting (24a) from (24b), substituting
( 1) ( 1)

1 1

l l
n n

i j jv y y
 

   , in the obtained equation,
we get

( 1) ( 1) ( 1) ( 1)
2

1 1 1 1
( 1) ( 1) ( 1) ( 1)

2
1 1 1 1

( ) ( ) ( 1) ( 1)
1 1 1 1

( , ) ( )

( , ) ( )

( ( , ) ( , ), )

l l l l
n n n n
j j j j

l l l l
n n n n
j j j j

l l l l
n n n n n n
j j j j j j

y y y y t

a y y y y t

f y u f y u y y

   

   

   

   

 

   

   

   

 

The 2nd term in the L.H.S. (left hand side) of
the above equations is positive (from the
assumptions on (.,.)a ), using the Lipschitz
condition on the f in the R.H.S. of the
equation, then using the Caschy-Schwarz
inequality in R.H.S. of the obtained equation,
the above equation becomes

( 1) ( 1) ( 1) ( 1)
2

1 1 1 1

( ) ( ) ( 1) ( 1)
1 1 1 1

0 0

( , ) ( )
l l l l

n n n n
j j j j

l l l l
n n n n
j j j j

y y y y t L

y y y y

   

   

 

   

   

 


2

2

2( 1) ( 1) ( )
1 1

0
( ) ( ) ( 1) ( 1)

1 1 1 1
0 0

l l tn n
j j

l l l l
n n n n
j j j j

y y L

y y y y

  
 

 

   

 

 


( 1) ( 1) ( ) ( )

1 1 1 1
0 0

l l l l
n n n n
j j j jy y y y

 

      ,

where
2

2

( )t L



( ) ( ) ( ) ( )

1 1 1 1
0 0

( ) ( )
l l l l
n n n n
j j j jh y h y y y     

i.e. the function h is contractive, and since

the sequence
( )

{ }
l
ny contain in , i.e.

( 1) ( 1)
( )
l l

h y y
 

  , for each l , then the

sequence
( )

{ }
l
ny of the above iterative method

converges to some point y  [2].

3. Existence Of A Discrete Classical
Optimal Control:-
In order to study the existence of a discrete

classical optimal control, we suppose in
addition to the above assumptions, that the
function ( , , , )n n n n

m j j jg x t y u , ( 0,1,...,m q  ) is

defined on n n n
j iI S W   ,( 1,...,i M  ,

& 0,1,...,j N  ), continuous w.r.t. &n n
j jy u

for fixed x and j , measurable w.r.t. x for
fixed &n n

j jy u , and x  , 0,1...,j N
satisfies

2( , , , ) ( ) ( )n n n n n n
m j j j jm jm jg x t y u G x y  ,

where 2( ) ( , ) ( )n n n
jm m jG x G x t L   , 0jm  ,.

Lemma 3.1:
The operator n

n n n
u

u y y is continuous.

Proof:
Let

0 1 1( , ,..., )n n n n
Nu u u u  ,

0 1 1( , ,..., )nk nk nk nk
Nu u u u  ,

0 1 1( , ,..., )n n n n
Ny y y y  ,

0 1 1( , ,..., )nk nk nk nk
Ny y y y  ,

0 1 1( , ,..., )n n n n
Nz z z z  ,

and
0 1 1( , ,..., )nk nk nk nk

Nz z z z   .
We want to prove that if nk nu u as k  ,
then nk n

nk nk n n
u u
y y y y   as k  , i.e. we

want to prove if nk n
j ju u , j , as k  ,

then nk n
j jy y , j , as k  . We will

prove it by mathematical induction, as
follows:-
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First, and from the initial conditions of the
(14), and (15), and the projection theory that

0 0
nk ny y and 0 0

nk nz z , as k  .
Second: assume for any fixed j , that

nk n
j jy y , and nk n

j jz z as k  , and we

shall prove that 1 1
nk n
j jy y  , as k  .

Let 1 1( , , , )n n n n n
j j j j jy h y z u y  , and

1 1( , , , )nk nk nk nk nk
j j j j jy h y z u y  , then

1 1 0

1 1 0
( , , , ) ( , , , )

nk n
j j

nk nk nk nk n n n n
j j j j j j j j

y y

h y z u y h y z u y

 

 

 




1 1 0

1 1 0

( , , , ) ( , , , )

( , , , ) ( , , , )

nk nk nk nk nk nk nk n
j j j j j j j j

nk nk nk n n n n n
j j j j j j j j

h y z u y h y z u y

h y z u y h y z u y

 

 



 

Since
1 1( , , , ) ( , , , )nk nk nk n n n n n

j j j j j j j jh y z u y h y z u y  ,
as k  , i.e.

1 1 0
( , , , ) ( , , , )

0, as

nk nk nk n n n n n
j j j j j j j j

k

h y z u y h y z u y

k
 

  
 ,

Then

1 1 1 10 0

nk n nk n
j j j j ky y y y      


1 1 0

0
1

nk n k
j jy y   


, as k 


1 1

nk n
j jy y  , as k 


nk n
j jy y , j ,

i.e. the operator n
n n n

u
u y y is continuous.

Lemma 3.2:
The functional ( )n n

mG u (for each
0,1,...,m q ) is continuous w.r.t. nu on

2 ( )L Q .

Proof:
For each m ( 0,1,...,m q ), we have

1

0

( ) ( , , , )
N

n n n n n n
m m j j j

j

G u t g x t y u dx


 

  

From the assumptions on n
mg , Lemma 3.1, and

Proposition 1.2 in [3], the functional
( , , , )n n n n

m j j jg x t y u dx

 is continuous w.r.t.

n
jy and n

ju , for each j , and for each x  .

Then ( )n n
mG u is continuous w.r.t. nu on

2 ( )L Q .

Lemma 3.3:
If the function f is Lipschitizian w.r.t.

ny and nu , the discrete controls nu and nu 
are bounded in 2 ( )L Q , n

jy ,

and ( )n n n n
j j j jy y y y   (with 0 )

are the corresponding discrete states
solutions to the discrete controls n

ju and

( )n n n n
j j j ju u u u   , respectively (for

each 0,1,...,j N ), then
2 22

1
 yn n

l Q
c u

and
2 22

0
 zn n

l Q
c u ,

Or
2

1
 ynl c , and

2

0
 znl c

Proof:
From the discrete state equations (8-11),

we get (for 0,1,..., 1j N  )

1 1

1 1

( , ) ( , )

( ( , ), )

n n n
j j j

n n n n
j j j j

z z v t a y v

t f y y u u v
 

 

  

   

1( ( , ), )n n
j jt f y u v , ................... (25)

1 1
n n n
j j jy y t z    , .......................(26)

0 0 0n ny z  , .....................................(27)

In the all next steps we will use c , L  , and
L for various constants.

Now, substituting 1
n
jv z  in (25), using

Lipschitiz property w.r.t. ny and nu , then
rewriting the first term in the obtained
equation in another way, we get

2 2 2n n n n
j+1 j j+1 j0 0 0

z z z z   
2n n 2

j+1 j+1 0
2 2n n

j+1 j+10 0

( y , z )

( y z )

n
jt a L t u L t    





Journal of Al-Nahrain University Vol.13 (3), September, 2010, pp.138-148 Science

144

22

0
2 2n n

j+1 j+11 0
( y z ) (28)

n
jL t u L t   



Since
n n n n
j+1 j j+1 j

2 n n
j+1 j+1

( y y , y y )

( ) ( z , z )

a

t a

 

 
,

and
n n n n
j+1 j+1 j j

2 n n n n
j+1 j+1 j+1 j+1

( y , y ) ( y , y )

( ) ( z , z ) 2 ( y , z )

a a

t a t a



    

Then
n n
j+1 j+1

n n n n1
j+1 j+1 j j2

( y , z )

[ ( y , y ) ( y , y )

t a

a a



  
n n n n
j+1 j j+1 j( y y , y y )]a   ............ (29)

By substituting (29) in the L.H.S. of (28),
summing both sides of the obtained equation
from 0j  to 1j l  , using the assumptions
on (.,.)a , and the initial conditions (27), we
get

2 2

12 2n n
j+1 j0 0

0

12 2n n
j+1 j2 21 1

0

z z z

y y y

l
n
l

j

l
n
l

j









 

  




1 22

0
0

1 2 2n n
j+1 j+11 0

0
( y z ) (30)

l
n
j

j

l

j

L t u

L t









  

 





But
2 2 2

1 11 1 1
2 2n n n n

j j j jy y y y   

and

2 2 2

1 10 0 0
2 2n n n n

j j j jz z z z   

Substituting these inequalities in (30), we have

2

12 2n n
j+1 j0 0

0

12 2n n
j+1 j2 1 1

0

z ( ) z z

y ( ) y y

l
n
l

j

l
n
l

j

c L t

c L t









    

    




1 12 2 22 n n

j j0 1 0
0 0

( y z )
N l

n
j

j j

L t u L t
 

 

     
12 2 22 n n

j j1 0
0

( y z ), (31)
l

n

Q
j

L u L t




   
where 2

2min(1, )c  in the L.H.S. of (31).

Now, choosing c
Lt  , then the 2nd & the 4th

terms in the L.H.S. of (31) become positive ,
and (31) becomes

2 2 2 2

0 1 0 1
( z y ) z  yn n n n

l l l lb c  

12 2 22 n n
j j1 0

0

( y z )
l

n

Q
j

L u L t




   


2 2 22

0 1

1 2 2n n
j j1 0

0

z  y

( y z )

n n n
l l Q

l

j

L u

L t




  

 

By using the discrete Gronwall s inequality
[6], we get that

2 2 2 22 2

0 1
z  yn n n n
l l Q Q

c L u c u  


2 22

1
 yn n

l Q
c u &

2 22

0
 zn n

l Q
c u

Since nu and nu  are bounded in 2 ( )L Q , then
the above inequality become

2

1
 ynl c ........................................... (32a)

and
2

0
 znl c ............................................ (32b)

Theorem 3.1:
Assume that n

AW  , nW is compact, f
is defined by

1

1 1 2 1

( , , , )

( , , ) ( , , )

n n n
j j j

n n n n n
j j j j j

f x t y u

f x t y f x t y u


  
such that
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1 1( , , ) ( , )n n n n
l j j l j l jf x t y F x t y   , 0l ,

for 2,1l , with )(2 QLFl  ,
n
mg (for 1, 2,...,m p ) is independent on nu ,

0
ng and n

mg (for 1, 2,...,m p p q   ) are
convex w.r.t. ( , )n ny u , then there exists a
classical optimal control.

Proof:
Since n

AW  , then there exists n nu W ,
such that

1( )n n n
m mG u  , for 1, 2,...,m p

and
2( )n n n

m mG u  , for 1, 2,...,m p p q  

But the operator n
n n n

u
u y y is continuous

(Lemma 3.1), the functionals ( )n n
mG u are

continuous w.r.t. nu and ny for each
0,1,...,m q (Lemma 3.2 ), and nW is

compact, then n
AW is compact.

So we get 0 ( )n nG u is a real continuous function
defined on the compact set n

AW , then there
exists an optimal control, i.e. there exists

n n
Au W , such that

0 0( ) min ( )
n n

A

n n n n

u W
G u G u




4. The Necessary Conditions For Discrete
Optimality:-
In order to state the necessary conditions

for discrete classical optimal control, we
suppose in addition that the functions yu fff ,, ,

mumym ggg ,, are defined on n n n
i jS I R W   ,

(where U  is an open set containing the
compact setU ), measurable w.r.t. x , and
continuous w.r.t. &n n

j jy u , and satisfy( for
each 0,1,...,j N )

( , , , )n n n
y j j jf x t y u L

( , , , )n n n
u j j jf x t y u L 

1( , , , ) ( , )n n n n n n n
my j j j m j m jg x t y u G x t y  ,

for 0,1,...,m q
and

2( , , , ) ( , )n n n n n n n
mu j j j m j m jg x t y u G x t y  ,

for 0,1,...,m q
where

2 ( )n
mG L  , ( , , , )n n n n n n

j j j i jx t y u S I R W   

with 1 20, and 0 , 0,1,...,m m m q  

Lemma 4.1:
Dropping the index m , the general

discrete classical adjoint state
0 1 1( , ,..., )n

n n n n n
Nu   is given by (for

1, 2,...,0j N N   ):

1

1

1

( , ) ( , )

( ( , )

( , ), ),

n n n
j j j

n n n
j y j j

n n
y j j n

v t a v

t f y u

g y u v v V







  

  



....................... (33)

1
n n n
j j jt    ......................................(34)

0n n
N N  ............................................(35)

where ,n n
j j nV , for each 0,1,...,j N

The directional derivative of G is given by:

0

( , )
( ) ( )lim

n n n n

n n n

DG u u u
G u u G u



 

 


1

1
0

( ( , , , ), )
N

n n n n n n
u j j j j j

j

t H t y u u





    ...........(36)

where ,n n nu u W  , n n n
j j ju u u  , and the

Hamiltonian nH is defined by:
1

1

( , , , , )

: ( , , , ) ( , , , )

n n n n n
j j j j

n n n n n n n n
j j j j j j j

H x t y u

f x t y u g x t y u


 
,

for each 0,1,..., 1j N 

Proof:
By using equation (25), with n

jv  , and
then using the Frechét derivative of the
function f in R.H.S. of the obtained equation
(which it exists from the assumptions on
f [10]), then multiplying both sides by t ,
summing over j (from 0j  to 1j N  ),
using (32a) & (32b), we get

1 1
1

1
0 0

1

1
0

( , )
( , )

( , )

n n nN N
j j j n n

j j
j j

N
n n n

y j u j j
j

z z
t a y

t

t f y f u

 



 







 



   

 



1( ) n
Q

O u ............................(37)

where 1( ) 0O  , as 0 , and

1( ) n n

Q Q
O y c u 
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Substituting 1
n
jv y  in (33), then

multiplying both sides by t , summing over j
(from 0j  to 1j N  ), we get

1 1
1 1

1
0 0

1 1

1 1
0 0

( , )
( , )

( , ) ( , ) (38)

n n nN N
j j j n n

j j
j j

n n
n n n n
j y j y j

j j

y
t a y

t

t f y t g y

 
 


 

 

 
 


 



  

 

 

Now, by subtracting (38) from (37), we get

1 1
1 1 1

0 0

1 1

1
0 0

( , ) ( , )

( , ) ( , )

n n n n n nN N
j j j j j j

j j

N N
n n n n

u j j y j
j j

z z y
t t

t f u t g y

 
  

 

 


 

 


 

  

 

 

1( ) n

Q
O u ................................. (39)

Now, for given values n
jy , 0,1,...,j N , in a

vector space, we will define the following
functions a.e. on I ,

( ) :n n
jy t y  , n

jt I , 0,1,...,j N  ,

1( ) :n n
jy t y  , n

jt I , 0,1,..., 1j N   ,

^ ( ) :ny t  the functions which is affine on each
n
jI , such that

^ ( ) :n n n
j jy t y , for each 0,1,...,j N .

By using these notations for , , &y z in the
1st and the 2nd terms of the L.H.S. of (39), we
have

1
1

0

^0

( , )

(( ) , ) (40 )

n n nN
j j j

j

T n n

z z
t

z dt a


















and
1

1 1

0

^0

( , )

(( ) , ) (40 )

n n nN
j j j

j

T n n

y
t

y dt b


 















Now, by using the discrete integration by parts
twice to the integral in (40a), i.e.

^0

^ 0 00

(( ) , )

( ,( ) ) ( , ) ( , )

T n n

T n n n n n n
N N

z dt

z dt z z







   




^0
( , ( ) )

T n nz dt   , (from (27) and (35))

^0
(( ) , )

T n ny dt  , (from (26) and(34))

^ 0 00
( , ( ) ) ( , ) ( , )

T n n n n n n
N Ny dt y y   

^0
( , ( ) )

T n ny dt   , (from (27) & (35))

= R.H.S. of (40b)

Substituting theses results in the L.H.S. of
equation (39), then this side becomes zero, and
equation (39) gives

1 1

1
0 0

1

( , ) ( , )

( ) (

N N
n n n n
y j u j j

j j

n

Q

t g y t f u

O u

 


 

    
.... (41)

On the other hand, we have that (since the
Frechét derivative of the function g exists,
from the assumptions on this function [10])

1

1
0

2

( ) ( )

( )

( ) (

n n n n

N
n n n n
y j u j

j

n

Q

G u G u

t g y g u dx

O u








  



 ............. (42)

where 2 ( ) 0O  , as 0

Now, by substituting (41) into (42) , we have

1

0

3

( ) ( )

( ) )

( ) (

n n n n

N
n n n
j u u j

j

n

Q

G u G u

t f g u dx

O u








  



 ................... (43)

where 3 1 2( ) ( ) ( ) 0O O O   , as 0

Dividing by the both sides of (43) , taking
the limit when 0 , we get

1

1 1
0

( , )

( ( , , ) ( , , ), )

n n n n

N
n n n n n n n n n
j u j j j u j j j j

j

DG u u u t

f t y u g t y u u


 


   


1

1
0

( ( , , , ), )
N

n n n n n n
u j j j j j

j

t H t y u u





    ...........(44)
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Lemma 4.2:
The operator n

n n n
u

u  is continuous.

Proof:
The proof is similar to Lemma 3.1.

Lemma 4.3 :
The operator ( )n n n

mu DG u , is
continuous w.r.t. nu , for each 0 m q  .

Proof:
The proof is similar to Lemma 3.2.

Theorem 4.1:
If n nu W is an optimal classical control

of the considered problem, nW is convex,
then nu (classical weakly) extremal, i.e. there
exists multipliers n

m  , (for each
0,1,...,m q ) with 0 0n  , and 0n

m  , ( for

1, 2,...,m p p q   ) satisfy
0

1
q

n
m

m 

 , such

that

0
( , ) 0, , (45)

q
n n n n n n n
m m j

m
DG u u u u W



    
and

[ ( ) ] 0n n n n
m m mG u   , for 1, 2,...,m p p q  

(transversity condition) ............................ (46)

where
0

q
n n n
j m mj

m 

 , and
0

q
n n n
u m mu

m
g g



 in

the definition of
0

q
n n
u mu

m
H H



 .

If nW has the form
{ : , 0,1,..., 1}n n n

j jW u u u U j N       ,
with U  , then the above relations are
equivalent to the following minimum principle
in blockwise form:

1

1

( ( , ) ( , ), )

min( ( , ) ( , ), )
i

n i

n n n n n n n
j u j j u j j ij T

n n n n n n n
j u j j u j j Tu U

f y u g y u u

f y u g y u u



 



 

0,1,..., 1j N   , and 1, 2,...,i M  , .... (47)

Proof:
From Lemma(3.2), the functionals
( )n n

mG u , for each 0,1,...,m q is continuous
w.r.t. n nu W . From the above assumptions
and Lemma 4.3, the functionals

( ) ( , )n n n n n n
m mDG u DG u u u  , for each
0,1,...,m q is continuous w.r.t. ( , )n nu u  and

linear w.r.t. n nu u  , then the functionals
( )n n

mG u is k-differentiable for every integer k,
then by Khun-Tanger-Lagrange Theorem
[10], there exist multipliers

0 0n  , n
m  ,(for 1, 2,...,m p ), and

0n
m  ,(for 1, 2,...,m p p q   ), with

0
1

q
n
m

m 

 , such that inequality (45), and

equality (46) are satisfy.

Let we use Lemma 4.1, then inequality (45)
for each n n

ju W  becomes:
1

1
0 0

[ ( , , )

( , , )]( ) 0

qN
n n n n n
m mj u j j j

j m

n n n n n n
mu j j j j j

t f t y u

g t y u u u dx




 



  




1

1
0 0

0

[( ) ( , , )

( ( , , ))]( ) 0

qN
n n n n n
m mj u j j j

j m

q
n n n n n n n
m mu j j j j j

m

t f t y u

g t y u u u dx




 





  

 


Set

0

q
n n n
j m mj

m 

 ,&
0

( , , )
q

n n n n n n
u m mu j j j

m
g g t y u



 ,

then
1

1
0

[ ( , , ) ( , , )]

( ) 0, (48)

N
n n n n n n n
j u j j j u j j j

j

n n n n
j j j

t f t y u g t y u

u u dx u W






 

    




1

1
0
( ( , , )

( , , ), ) 0, , (49)

N
n n n n
j u j j j

j

n n n n n n n
u j j j j j j

t f t y u

g t y u u u u W






 

    



To prove (49) is equivalent to the minimum
principle blockwise form (47), we define

{ : , 0,1,..., 1}n n n
j jW u u u U j N       ,

with U  .
Let n n

j ju u  , for all j except once say k , i.e.
n n
k ku u  , then (49) becomes

1

1

( ( , , ) ( , , ), )
min( ( , , ) ( , , ), )

n n n n n n n n
k u k k k u k k k k

n n n n n n n
k u k k k u k k ku U

f t y u g t y u u
f t y u g t y u u







 

Since k is arbitrary, then for each
0,1,..., 1j N  , we have
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1

1

( ( , , ) ( , , ), )

min( ( , , ) ( , , ), )

n n n n n n n n
j u j j j u j j j j

n n n n n n n
k u k k k u j j ju U

f t y u g t y u u

f t y u g t y u u






 

Then for each 0,1,..., 1j N  , and
1, 2,...,i M , we have

1

1

( ( , , ) ( , , ), )

min( ( , , ) ( , , ), )
i

i

n n n n n n n n
j u j j j u j j j ij T

n n n n n n n
k u k k k u j j j Tu U

f t y u g t y u u

f t y u g t y u u






 

The proof of the minimum principle blockwise
form (47) is equivalent to (49), follows
conversely form the above steps.
5.Conculusions

The finite element method associated with
the implicit finite difference scheme used
successfully to discretize the continuous state
and its adjoint equations in the continuous
classical optimal control problem to a discrete
state and adjoint equations, while the Grank-
Nicolson finite difference method or the -
finite difference method with 0 1  failed
to give a suitable discretization for the adjoint
state equations.

The Galerkin method is suitable to solve
the nonlinear hyperbolic partial differential
equations (discrete state equations) associated
with fixed discrete classical controls.

The existence theory for optimality of a
discrete classical optimal control problem is
developed so as the necessary conditions and a
picewise minimum principle for optimality.
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