$\mathcal{R}\alpha$ –COMPACTNESS ON BITOPOLOGICAL SPACES

Rasha Naser Majeed Department of Mathematics, College of Education–Ibn Al- Haitham, Baghdad University, Baghdad-Iraq.

Abstract

In this paper we define a new type of open sets in bitopological space which we called $\Re a$ —open sets, which leads to define a new type of compactness on bitopological spaces called " $\Re a$ —compactness" and we study the properties of this spaces, also we define the continuous functions between these spaces.

1.Introduction

The concept of "bitopological space" was introduced by Kelly [1] in 1963. A set equipped with two topologies is called a "bitopological space" and denote by (X, τ_1, τ_2) , where (X, τ_1) , (X, τ_2) are two topologicals paces. Since then many authors have contributed to the development of various bitopological properties. A subset A in bitopological space (X, τ_1 , τ_2) is "S- open " if it is τ_1 -open or τ_2 - open. in 1996 Mrsevic and Reilly [5] defined a space (X, τ_1 , τ_2) to be S-compact if and only if every S-open cover of X has a finite sub cover. And also they defined a space (X, τ_1 , τ_2) to be pair-wise compact [5]. In this paper we introduced a new type of compactness on bitopological spaces namely "Ra -compact" and we review some remarks, propositions, theorems and examples about it.

2. Preliminaries

In this section we introduce some definitions. Which is necessary for the paper.

Definition 2.1 [1]:

Let X be a non-empty set, let τ_1 , τ_2 be any two topologies on X, then (X, τ_1 , τ_2) is called "*bitopological space*".

Definition 2.2[2]:

A subset A of a topological space X is called " α -open set" if and only if $A \subseteq \overline{A}^*$. The family of all α -open sets is denoted by τ_{α} .

Definition 2.3[2]:

The complement of α -open set is called " α -closed set". The family of all α -closed sets is denoted by $\alpha C(X)$.

Proposition 2.4[3]:

(i) Every open set is α -open set .

(ii) Every closed set is α -closed set.

Corollary 2.5 :

Let (X, τ) be a topological space, then τ_{α} is finer than τ .

Definition 2.6 [4] :

Let (X, \mathbf{r}) be a topological space, a family \mathfrak{A} of subsets of X is said to be an "*a*-open cover of X " if and only if \mathfrak{A} covers X and $\mathfrak{A} \subseteq \mathbf{r}_{\alpha}$.

Definition 2.7 [4]:

Let \mathfrak{A} be any α -open cover of X, a subfamily \mathfrak{B} of \mathfrak{A} is said to be an " α -open sub cover of \mathfrak{A} "if and only if it is cover X.

Definition 2.8 [4]:

Let (X, τ) be a topological space, any subspace A of X is said to be "*a*-compact" if and only if every *a*-open cover of A has a finite sub cover.

Proposition 2.9 [4]:

Every α -compact space is compact.

3. **Ra** – Compactness

In this section, we will define a new type of covers in bitopological spaces, in order to define a new kind of compactness on bitopological space called " $\Re \alpha$ -compactness".

First we begin with the definition of $\Re \alpha$ -open set in bitopological space.

Definition 3.1 :

Let (X, τ_1, τ_2) be a bitopological space, then any collection of subsets of X which is contained $\tau_{1\alpha}$ and $\tau_{2\alpha}$ and it is forms a topology on X called "*the supermom topology* on X " and is denoted by $\tau_{1\alpha} \vee \tau_{2\alpha}$. Where $\tau_{1\alpha}$ is the family of all α -open sets in the space (X, τ_1) and $\tau_{2\alpha}$ is the family of all α -open sets in the space (X, τ_2) .

Definition 3.2 :

A subset A of a bitopological space (X, τ_1, τ_2) is said to be an "**Ra** -open set" if and only if it is open in the space $(X, \tau_{1\alpha} \lor \tau_{2\alpha})$, where $\tau_{1\alpha} \lor \tau_{2\alpha}$ is the supermom topology on X contains $\tau_{1\alpha}$ and $\tau_{2\alpha}$.

Definition 3.3:

The complement of an $\Re \alpha$ -open set in a bitopological space (X, τ_1 , τ_2) is called " $\Re \alpha$ -closed set ".

Remark 3.4:

Let (X, τ_1, τ_2) be a bitopological space, then:

- (1) Every α -open set in (X, τ_1) or (X, τ_2) is an $\Re \alpha$ -open set in (X, τ_1, τ_2) .
- (2) Every α -closed set in (X, τ_1) or (X, τ_2) is an $\Re \alpha$ -closed set in (X, τ_1, τ_2) .

Note 3.5:

The opposite direction of remark (3.4) is not true as the following example shows:

Example (1):

Let $X = \{1,2,3\}, \tau_1 = \{\emptyset, \{1\}, X\}, \text{ and}$ $\tau_2 = \{\emptyset, \{2,3\}, X\}$ then $\tau_{1\alpha} = \tau_1 \cup \{1,2\}, \{1,3\}\}, \text{ and } \tau_{2\alpha} = \tau_2.$ thus $\tau_{1\alpha} \lor \tau_{2\alpha} = \{\emptyset, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}, \{2\}, \{3\}, X\}$ is the family of all $\mathcal{R}\alpha$ — open sets in (X, τ_1, τ_2) . $\{3\}$ is an $\mathcal{R}\alpha$ — open set in (X, τ_1, τ_2) but it is not α -open set of both (X, τ_1) and (X, τ_2) . So $\{1,2\}$ is an $\mathcal{R}\alpha$ —closed set in (X, τ_1, τ_2) which is not α -closed in both (X, τ_1) and (X, τ_2) . Now we introduce the definition of **\Re a** —opencover in bitopological space (X, τ_1, τ_2) .

Definition 3.6:

Let (X, τ_1, τ_2) be a bitopological space, let A be a subset of X. a sub collection of the family $\tau_{1\alpha} \vee \tau_{2\alpha}$ is called an "**Ra**-opencover of A" if the union of members of this collection contains A.

Definition 3.7:

A bitopological space (X, τ_1 , τ_2) is said to be "**Ra** –compact space" if and only if every **Ra** –opencover of X has a finite subcover.

Theorem 3.8:

If (X, τ_1, τ_2) is **R** α -compact space, then both (X, τ_1) and (X, τ_2) are α -compact.

<u>Proof:</u>

To prove (X, τ_1) is α -compact space, we must prove for any α -open cover of X, has a finite sub cover.

Let $\{U_t\} t \in A$ be any α -open cover of X, implies $\{U_t\} t \in A$ is an $\Re \alpha$ -opencover of X (by remark (3.4)) and since (X, τ_1, τ_2) is $\Re \alpha$ -compact space, implies there exists a finite sub cover of X, so (X, τ_1) is α -compact. Similarly, we prove (X, τ_2) is α -compact.

Corollary 3.9:

If (X, τ_1, τ_2) is $\mathcal{R}\alpha$ -compact space, then both (X, τ_1) and (X, τ_2) are compact.

Proof:

The proof is follows from theorem(3.8) and proposition (2.9).

Remark 3.10:

The converse of theorem (3.8) and it's corollary is not true, as the following example shows:

Example (2):

Let $X=\{0,1\}$, $\tau_1==\{\emptyset, \{0\}, X\}$, and $\tau_2=\{\emptyset, \{1\}, X\}$ then $\tau_{1\alpha} = \tau_1$ and $\tau_{2\alpha} = \tau_2$. Now, both (X, τ_1) and (X, τ_2) are α -compact (compact) space, but (X, τ_1, τ_2) is not $\Re \alpha$ -compact space since there is {{0},{1}} is an $\Re \alpha$ -opencover of X which has no finite sub cover.

The converse of theorem (3.8) becomes valid in a special case, when $\tau_{1\alpha} \subset \tau_{2\alpha}$, as the following proposition shows:

Proposition 3.11:

If $\tau_{1\alpha}$ is a subfamily of $\tau_{2\alpha}$, then (X, τ_1, τ_2) is an $\Re \alpha$ -compact space if and only if (X, τ_2) is α -compact.

Proof:

The first direction follows from theorem (3.8).

Now, if (X, τ_2) is α -compact, we must prove (X, τ_1, τ_2) is $\Re \alpha$ -compact. since $\tau_{1\alpha} \subset \tau_{2\alpha}$, then $\tau_{1\alpha} \lor \tau_{2\alpha} = \tau_{2\alpha}$. So (X, τ_1, τ_2) is $\Re \alpha$ -compact space.

Corollary 3.12:

Let (X, τ) be a topological space, then the bitopological space (X, τ, τ_{α}) is $\Re \alpha$ -compact space if and only if (X, τ_{α}) is α -compact.

Proof:

 (\Rightarrow) *it is* clear from theorem (3.8).

(\Leftarrow) since τ_{α} is a finer than τ , then by proposition (3.11) we have (X, τ, τ_{α}) is $\Re \alpha$ -compact.

Proposition 3.13:

If A and B are two $\Re \alpha$ -compact subsets of a bitopological space (X, τ_1, τ_2) then $A \cup B$ is an $\Re \alpha$ -compact subset of X.

Proof:

To prove $A \cup B$ is an $\Re \alpha$ -compact subset of X, we must prove for any $\Re \alpha$ -opencover of $A \cup B$, it has a finite sub cover.

Let $\{U_t\} t \in \Lambda$ be any $\Re \alpha$ -opencover of $A \cup B$, then $A \cup B \subseteq \{\bigcup U_i, t \in \Lambda\}$ and therefore $A \subseteq \bigcup U_i$ and $B \subseteq \bigcup U_i$, implies $\{U_i\} t \in \Lambda$ is an $\Re \alpha$ -opencover of A and B. But A and B are $\Re \alpha$ -compact subsets, therefore there exists $i_1, i_2, ..., i_n \in \Lambda$ and $t_1, t_2, ..., t_m \in \Lambda$ such that $\{U_{t_1}, U_{t_2}, ..., U_{t_n}\}$ and $\{U_{i_1}, U_{i_2}, ..., U_{i_m}\}$ is a finite sub cover of A and B respectively, then

 $\{U_{t_1}, U_{t_2}, ..., U_{t_n}\} \cup \{U_{t_1}, U_{t_2}, ..., U_{t_m}\}$ is a finite sub cover of A U B, therefore $A \cup B$ is an $\Re \alpha$ -compact subset of X.

Remark 3.14:

If A and B are two $\Re \alpha$ -compact subsets of a bitopological space (X, $\tau_{1^{n}} \tau_{2}$) then $A \cap B$ need not to be $\Re \alpha$ -compact subset of X, for example:

Example (3):

Let $X=\mathbb{N} \cup \{0, -2\}$, (where \mathbb{N} is the set of natural numbers) and let $\tau = \mathbb{P}(\mathbb{N}) \cup \{U \subseteq X; 0, -2 \in U \land X - U$ finite $\}$.

Then $\tau_{\alpha} = \tau \cup \{U \subseteq X; (0 \in U \text{ or } -2 \in U) \land X - U \text{ is finite}\}.$

Now, let $A = \mathbb{N} \cup \{0\}$ and $B = \mathbb{N} \cup \{-2\}$, then both A and B are α -compact subsets of a topological space (X, τ). And since τ_{α} is finer than τ , therefore $\tau \vee \tau_{\alpha} = \tau_{\alpha}$. hence A and B are both $\Re \alpha$ -compact subset of a bitopological space (X, τ , τ_{α}).

Since every $\Re \alpha$ -opencover of A (of B, respectively) must contain an $\Re \alpha$ -openset, say V such that $0 \in V(-2 \in V$, respectively), whose complement is finite. so, V together with a finite number of $\Re \alpha$ -opensets of the cover will cover A (cover B, respectively).

But $A \cap B = \mathbb{N}$ is not an $\mathcal{R}\alpha$ -compact, since $\{\{n\}; n \in \mathbb{N}\}\$ is an $\mathcal{R}\alpha$ -opencover of $A \cap B$, which has no finite sub cover.

Theorem 3.15:

The $\Re \alpha$ -closed subset of an $\Re \alpha$ -compact space is $\Re \alpha$ -compact.

Proof:

Let (X, τ_1, τ_2) be an $\Re \alpha$ -compact space and let A be an $\Re \alpha$ -closed subset of X. to show that A is an $\Re \alpha$ -compact set.

Let $\{U_i\} i \in \Lambda$ be any $\mathcal{R}\alpha$ -opencover of A. Since A is $\mathcal{R}\alpha$ -closed subset of X, then X-A is an $\mathcal{R}\alpha$ -open subset of X, so $\{X-A\}$ $\cup \{ U_{l}; l \in \Lambda \}$ is an $\mathcal{R}\alpha$ -opencover of X, which is $\mathcal{R}\alpha$ -compact space.

Therefore, there exists $l_1, l_2, ..., l_n \in \Lambda$ such that {X-A, $U_{i_2}, U_{i_2}, ..., U_{i_n}$ } is a finite sub cover of X .as $A \subseteq X$ and X-A covers no part of A, then $\{U_{i_2}, U_{i_2}, ..., U_{i_n}\}$ is a finite sub cover of A. so A is $\mathcal{R} \alpha$ -compact set.

Definition 3.16:

A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \tau'_1, \tau'_2)$ is said to be "**Ra** – continuous function " if and only if the inverse image of each **Ra** – open subset of Y is an **Ra** – open subset of X.

Theorem 3.17:

The $\Re \alpha$ -continuous image of an $\Re \alpha$ -compact space is an $\Re \alpha$ -compact space.

Proof:

Let (X, τ_1, τ_2) be an $\Re \alpha$ -compact space, and let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \tau'_1, \tau'_2)$ be an $\Re \alpha$ -continuous, onto function. To show that (Y, τ'_1, τ'_2) is an $\Re \alpha$ -compact space. Let $\{U_i; i \in \Lambda\}$ be an $\Re \alpha$ -opencover of Y, then $\{f^{-1}(U_i); i \in \Lambda\}$ is an $\Re \alpha$ -opencover of X, which is $\Re \alpha$ -compact space.

So there exists $t_1, t_2, ..., t_n \in \Lambda$, such that the family $\{f^{-1}(U_{i_j}); j = 1, 2, ..., n\}$ covers X and since f is onto, then $\{U_{i_j}; j = 1, 2, ..., n\}$ is as finite sub cover of Y.

Hence Y is an $\Re \alpha$ –compact space.

References

- J.C.Kelly, "Bitopological Spaces", Prok. London Math. Soc., Vol. 13(1963), 71-89.
- [2] G.B.Navalagi, "Definition Bank in General Topology", Department of Math., G.H. college, Haveri-581110, Karnataka, India.
- [3] Nadia M.Ali, "ON New Types of weakly open sets", M.Sc. Thesis, University of Baghdad, College of Education, Ibn Al-Haitham, 2004.
- [4] S.N.Maheshwari and S.S.Thakur ,"On a -compact Spaces", Bulletin of the Institute of Mathematics Academia Sinica, Vol. 13, No.4, dece.(1985), 341-347.

[5] Mrsevic and I.L. Reilly, "Covering and connectedness properties of a topological space and it is Associated topology of *a*subsets", Indian J. pure apple. Math., 27(10):995-1004, oct. (1996).

الخلاصة

قمنا في هذا البحث بتعريف نوع جديد من المجموعات المفتوحة على الفضاءات التبولوجية الثنائية والتي اسميناها المجموعات المفتوحة – **R**. وبالتالي عرفنا نوع جديد من التراص على الفضاءات الثنائية والذي اسميناه التراص من نوع – **R**. وقمنا بدراسة خواص هذا الفصناء وكنلك عرفنا الدوال المستمرة بين هذه الفضاءات.