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Abstract

Let R be a commutative ring with identity, and let M be a unitary R-module. In this paper we
introduce the concept of quasi-maximal module, some properties and characterizations of
guasi-maximal modules are given. Also, various basic results about quasi-maxima modules and
regular modules are considered. Moreover, some relations between quasi-maxima modules and
other types of modules are considered.

1. Introduction An ideal | of a ring R is caled
Every ring considered in this paper will be semimaximal if | is an intersection of finitely

assumed to be commutative with identity and many maximal ideals of R, see[1].

every module is unitary. We introduce the

following: An R-module M is called a quasi- 2.2 Remarks and Examples:

. o . but the converse is not true in general. For
is a semimaximal idea of R, where

anneM={r: fi R and rM=0for all mi M}, [1]. example: 6Z is a semimaximal ideal of a

Our concern in this paper is to study quasi- ring Z which is not maximal, see [2].
maximal modules and look for any relation > % M=AZ, as a Z-module be a quas-

between quasi-maximal modules and certain maximal module, where p is prime

types of well-known modules specially with number. Since

semiprime modules. an(AZ)= [Camn(Z) = Z) =
This paper consists of three sections. Our \/ Z(p o) \/Qpl 2(Z,) \/Qpl(p )

main concern in section one, is to define and \/p_Z =pZ

study quasi-maxima modules, and we give
some characterizations for this concept. In
section two, we study the relation between
guasi-maximal and regular modules. In section

Isasemimaximal ideal of Z.
3. For each positive integer n, the Z-module
ZAZ, is not quasi-maximal module. Since

three, we study the relationships between Jann,(ZA z,) =(0) is not semimaximal
quasi-maximal modules and onother types of idleal of Z.
modules  specially with the semiprime 4, Z as a Z-module is not quasi-maximal
modules. module.
2.Basic Properties of Quasi-maximal 5. Every submodule of quasi-maximal
modules R-module is quasi-maximal R-module.
In this section, we introduce the concept of Proof:
a quas-meximad module and give some Let N be a non-zero proper submodule of

characterizations and establish some basic . .
properties of this concept. M, to show that ./ann,N is semimaximal

Firs, we introduce the following ideal of R, since Ni M, which implies that

definition. anngMi anngN and hence
21 Definition: JanMIi Jan,N. But JanM is
A non-zero R-module M is called quasi- ~ semimaximal ideal of R because M s

maximal module if and only if Jan.M is ~ Oues-maxima - R-module.  Therefore,
sermimaximal ideal of R annyN is semimaximal ideal of R by

[2,proposition  (1.2.11),p.20]. Hence N is
guasi-maxima R-module.
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6. Q as a Z-module is not quasi-maximal
module.
Now, we state and prove the following
result.

2.3 Proposition:

Zn a a Z-module is a quasi-maximal
module if and only if m=pyp,x.op, , where
pi is a distinct prime number and a; 31,
i=1,2,...,n.

Proof:
Suppose that Zn

is a quas-maximal
o o Q,

Z-module, to show that m=pl>p2>s..>pnn,
where p; is a distinct prime number and

a 31, i=12,...n. Thus ‘/annzzm is
seemimaximal ideal of Z, since
Jann,Z  =<mZ =(p,»p, X..>p,). Therefore

o o, 0 o,

m= p1>102>qC)3><...>}:)"n , Where p; is a distinct
prime number and a;3 1, i=1,2,...,n.

Conversdly, ifm=p11>p22>s..>pnn, where p; is a
distinct prime number and a;31, i=1,2,...,n, to
show Zpn is a quas-maxima Z-module,

Jan,Z, =~mZ =4[pp,X. 9, =

(PP, % 4P,) =C Py

Hence Z, is a quasi-maximal Z-module.
Aspecia case of proposition (2.3), we give

the following corollary.

24 Corollary:

Z, a a Z-module is quasi-maximal
module, where p is prime number.

The following theorem gives some
characterizations for quasi-maxima modules.

2.5 Theorem:

Let M be an R-module. Then (1) b (2),
2 P 3,13 b (4), 4 b (1) if M isfinitely
generated :

1. M isaquas-maximal R-module.

2. [W:A] is a semimaximal ideal of R
for every ideal A of R such that
A Jan M

3. [{angM :r] is a semimaximal ideal of R
for M R such that

rl

every element
ann;M .
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4. Janng(m) is a semimaximal ideal of R
for every non-zero element mi M.

Proof:

(1) P (2) Suppose that M is quasi-maximal.
Then (ann,M is semimaximal ided
of R. Assume that A is an ided of R

such that A |/ Jann M . Since
Jan M 1 [fann M :A]. Thus by
[2,proposition  (1.2.11),p.20], we  get

[vann,M :A] isasemimaximal ideal of R.

(2) P (3) By taking A=R and from (2), we get
the resullt.

(3P (4)let 0t ml M.

Because 11 \Jan (m), [ an.(m):R] is
semimaximal by (3).

But [Jan.(m) :R]=,/ann,(m), o)
Jann, (m) issemimaximal ideal of R.
4 b (1) sdSnce M is finitely

generated, M =g Rxi, xil M. Thus

i=1

Jann,M =XTQ:M1/annR(x), by (4), \Jann,(x)
is semimaximal ideal of R. Thus
XTQM\/M is semimaximal ideal of R by
[2,corollary (1.2.15),p.21]. Therefore
Jann M is semimaximal ideal of R. Hence M
is quasi-maxima R-module.

The following proposition shows a direct

sum of quasi-maximal R-modules is a quasi-
maximal R-module.
2.6 Proposition:

Let M1 and M, be two R-modules. Then
M1AM, is a quasi-maximal R-module if and
only if M; and M, are quas-maxima
R-modules.

Proof:

Suppose that M= M;AM, is a quas-
maximal R-modules by remarks and examples
(2.2), (5)), M1 and M are quas-maximal
R-module.

Conversely, Assume that M; and M;
are quasi-maximal R-modules, let
0Ot mil M, me(m,my) and anng(m) =

anng(my) C anng(mp). Thus .janng(m) =
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Janng (m,) G ann (m,) = yJann, (m,) C
Jang(m,). Since M; and M
semimaximal ideals of R.

Thus  \/anng(m,) G \Jann,(m,) a
semimaximal ideal of R by [2, proposition

are

is

(1.2.14), p.21]. Then amng(m) is
semimaximal ideal of R and hence

M= M1A M is a quasi-maximal R-modules.
So, we have the following application of
(2.6).

2.7 Corallary:

/i:\u M, is a quasi-maximal R-module if and

only if M, is a quasi-maxiaml R-modules for
dl a.

3. Quasi-maximal and Regular Modules

In this section, we study the relationships
between quasi-maximal modules, regular rings
and regular modules.

Recall that aring R is called regular (Von-
Numann) if for each element a R, there exists
an element rl R such that a=ara (a=&’r if R is
commutative), see[3].

We start with the following proposition.

3.1 Proposition:
If M is a quas-maximal R-module, then

isregular ring.
anngM

Proof:
Since M is quasi-maximal R-module, then

Jan M is semimaximal ideal of R. Thus by

_R
JanngM
is regular ring.

The following corollary is an immediate
consequence of proposition (3.1).

[2,proposition (1.3.1),p.26], we get

3.2 Corallary:
If O'x is an element of an R-module M

such that ./ann,(x) is semimaximal ideal of

R
Jann (x)
Proof:

It is obvious according to theorem (2.5)
and proposition (3.1).

R, then isregular ring.
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Before we introduce other results we need
the following definitions are needed:

A submodule N of an R-module M is said
to be pure if IMCN=IN for every idedl | of R,
see [3]. And an R-module M is called regular
module if every submodule of M is pure.

Anideal | of aring R is caled a semiprime
ideal if for all al R, &1 |, thenal |, see[4].

A ring R is called a local ring if R contains
only one maximal ideal, see [1].

An R-module M is called semismple if
every submodule of M is a direct summand of
M. A ring R is said to be semismple ring if
and only if R is a semismple R-module,
see [4].

The following proposition shows that
(anngM is semiprime ideal of R) is a sufficient
condition for quas-maximal module to be
regular module.

3.3 Proposition:

Let M be a quasi-maximal R-module and
anngM is semiprime ideal of R. Then M is
regular R-module.

Proof:
Let M be a quasi-maxima R-module, then

Jann,M is semimaxima idael of R, but

anngM is semiprime idea of R, then
JanM= anmgM. Thus anngM s
semimaximal ideal of R. Therefore is
anngM
semismple ring by [2,proposition
(1.2.5),p.17], which implies that is
ann,M
regular ring. Let f: R Ya® R be a
anngM anng (x)

function that defined by f(r+ anngM)=r+
anng(x) for all rf R. It can be easily shown that
f is well-defined and f is an epimophisim.

Thus

is a regular ring by

anng ()
[2,proposition  (1.1.28)]. Therefore M
regular R-module by [2,definition (1.1.30)].
As an application of proposition (3.3) we
give the following corollaries.

is



3.4 Corollary:
Let M be a quas-maximal R-module and

anngM is semiprime ideal of R. Then JM)=0.

Proof:
From proposition (3.3) and [2,proposition
(1.1.65),p.13].

3.5 Corollary:
Let M be an R-module over alocal ring R

and anngM is a semiprime ideal of R. Then M
is semismple R-module.

Proof:

It follows directly by proposition (3.3) and
[2,proposition (1.1.29),p.6].

Recdll that an R-module M is said to be
flat if for each injective homomorphism
f:N3%®N from R-module N into another
R-module N1, the homomorphisim
1MAf:M,§N'3/4® M/R-'\N is injective, where
1y istheidentity isomorphisim of M, see [1].

Now, we end this section by the following
proposition.

3.6 Proposition:
Let M be a quasi-maximal R-module. Then

M isflat -module.
anngM
Proof:
Assume that M is quas-maximal

R-module. Then ,/ann;M is semimaxiimal
R
JannM
by [2,proposition (1.2.5),p.17]. Hence M isflat

R -module by
annyM

(1.1.26),p.6].

ideal of R. Thus is semisimple ring

[2,proposition

4.Some Reations Between Quasi-
maximal modules and Other M odules
In this section, we study the relationships
between quasi-maximal modules and maximal,
semisimple and semiprime modules.
We begin with following proposition.

4.1 Proposition:
Every module M over a Boolean ring is
guasi-maximal module.
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Proof:
Since R is a Boolean ring, then every ideal
of R is semimaxima by [2,corollary

(1.2.7),p.18]. In paticular .Jan;M s

semimaximal ideal of R and hence M is quasi-
maximal R-module.

4.2 Proposition:
If R is a semisimple ring. Then every
module M over R is quasi-maximal module.

Proof:

Assume that R is a semisimple ring. Then
every proper idea of R is semimaximal by
[2,corollary  (1.2.6),p.18]. In particular
Jann,M is semimaximal ideal of R.

Now, we have the following proposition.
4.3 Proposition:

Let M be a finitely generated semisimple
R-module and anng(x) is semiprime ideal of R

for al 0t xI M. Then M is quasi-maximal R-
module.

Proof:

We have M is semisimple R-module, then
annk(x) is semimaxima ideal of R for all
0txI M by [2,proposition (1.2.26),p.25]. But

anng(x)=+/ann,(x)  because annr(x) s

semiprime ideal of R. Thus ./ann.(x) is
semimaximal ideal of R for al 0'xI M and
hence by theorem ((2.5),4), M is quas-
maximal R-module.

An R-module M is called a Max-module if

JangN is a maxima ideal of R, for each

non-zero submodule N of M, see[5].
By using this concept, we have the
following.

4.4 Proposition:
Every Max-module

is quas-maximal

module.
Proof:

Let M be a max-module, then \/ann;M is
maximal ideal of R by [5remarks and

examples (2.2),(6),p.5].

Note that, the converse of proposition (4.4)
is not true in general. For example, the
Z-module Z3, is a quas-maximal by remark
(2.3), but it is not a Max-module since

N=<2> is a submodule of Z;» and
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Jann, <2>=16Z =6Z is not maximal ideal
of Z.

Next, we study quasi-maxima modules
and semiprime modules. But first the
following definitions are needed.

An R-module M is called semiprime if and
only if anng(N) is a semiprime ideal of R for
each non-zero R-submodules N of M, see [6].

A submodule N of an R-module M is
cdled a primary submodule if N*M and
whenever rxi N for rf R and xI M we have

either xI N or rl [N : M] for somenT Z,, see
R

[7]. And an R-module M is said to be a
primary if (0) isa primary R-submodule of M.
A submodule N of an R-module M is
caled essentiadl in M for each non-zero
R-submodule L of M, NCL* 0, see [4]. And
R-module M is cadled uniform if every
non-zero R-submodule of M is essential.

4.5 Remark:

Let M be a quasi-maximal R-module.
Then it is not necessary to be semiprime
R-module. For example , the Z-module Zs is
guasi-maxima Z-module by propostion (2.3)
but it is not semiprime Z-module, since <5> is

submodule of Z3 and
«/ann <5>=.6Z=6Z is not semiprime
ideal of Z.

In the following propostion, we give
necessary conditions under which remark (4.5)
holds.

4.6 Proposition:
Let M be a quas-maxima primary
R-module such that \/ann,N =anngzN for each

non-zero submodule N of M. Then M is
semiprime R-module.
Proof:

Assume that M is primary R-module, then

JanM = Jann N for each non-zero
submodule N of M by [8theorem
(2.1.3),p.22]. But ./ann;M is semimaximal
ideal of R because M is quasi-maximal
R-module. Thus .anngN is semimaximal

ideal of R, which implies that annk(N) is
semimaxiaml ideal of R for each non-zero
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submodule N of M (since ./anngN =anngN
for each non-zero submodule N of M). Then
by [6, definition (4.1.1), p.62], M is semiprime
R-module.

The condition (/ann,N =anngN for each
non-zero submodule N of M) can not be

dropped from propostion (4.6) as the
following example shows:

4.7 Example:
The Z-module Z36 is primary [8,corollary

(2.1.8),p.24]. Also it is quas-maximal, since
Jan,Z,, =+16Z =2Z is semimaximal ideal
of R, but \Jann,N * ann,N for each non-zero

submodule N of Zis since <4> is a

Zis, +Jann,<4>=27

1 ann, <4>=4Z. Thus Z is not semiprime

Z-module.

The converse of proposition (4.5) is not
true in genera, as the following examples
shows.

submodule  of

4.8 Example:
Z as a Z-module is primary and semiprime

module. Also ,/ann,N =annzN for each non-

zero submdoule N of M. But Z is not quasi-
maximal Z-module.

In the following proposition, we introduce
a sufficient condition under which the
converse of proposition (4.5) istrue.

4.9 Proposition:
Let M be a uniform and semiprime module
over a PID and /anngN =annzN for each

non-zero submodule N of M. Then M s
guasi-maximal R-module.

Proof:

Since M is uniform and semiprime
R-module. Then by [6,proposition
(4.2.3),p.73], M is prime. This is means for
each non-zero submodule N of M,
anngN=anngM, [9]. Thus ,/ann;M =

Jan,N = amgN  which implies that
WzannRNzannRM (since M is prime).
Therefor \/m:annRM. Also we get M is
quasi-prime module by [9,remark



(1.2.2),p.10]. Hence anngM is prime ideal of R
by [9,corollary (1.2.7),p.14]. So, anngkM is
semimaximal ideal of R (since R is PID). Then
anngM is semimaximal ideal of R, which
implies that ,/ann M is semimaximal ideal of
R and hence M is quasi-maximal R-module.

The following results are another
consequences of proposition (4.9), but first we
need to recall some definitions.

An R-module M is caled F-regular if
every submodule of M is pure, see[3].

An R-module M is caled divisble if
rM=M for al 0 rl R, see[1].

An R-module M is called quasi-Dedekind
if every non-zero R-submodule of M is quasi-
invertible, where a submodule N of M is called

quasi-invertible if Hom(% M)=0, see [1].
Now, we can easily obtain the following.

4.10 Corollary:
Let R be a PID. If M is an F-regular
divishle and uniform R-module such that

Jan,N=anngN  for  each  non-zero

submodule N of M, then M is quasi-maximal
R-module.

Proof:

It follows directly by [6, proposition
(4.2.7), p.74] and proposition (4.9).

According to the fact, that every uniform
and quasi-Dedekind R-module M is semiprime
[6,proposition (4.2.4),p.72] the following is an
immediately consequence of proposition (4.9).

4.11 Corollary:
Let R be a PID. If M is a uniform quasi-

Dedekind R-module such that
Jann N =annzN for each non-zero

submodule N of M, then M is quasi-maximal
R-module.
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