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Abstract

In this paper, the objective is to derive the variational formulation of the electrochemical
meachining problem (ECM for short) and to evauate the numerical solution using the direction Ritz
method. This problem is of degenerate problem which has so many difficulties to be solved using

other approach.

1. Introducation

As an dternative to definition to
mechanical machining problem, a piece of
metal can sometimes be shaped by using it as
an anode in éectrolytic cell with an
appropriately shaped cathode. This represent a
moving boundary value problem, because the
anode surface is moved toward the cathode at
constant velocity, and products of the erosion
of the anode ae swept away by the
electrolytes, which is pumped through the
space between the electrodes, [12].

2. The mathematical model of the problem

The two dimensional ECM problem will
be considered for two electrodes shown in
Fig. (1). the space between the electrodes is
filled by an appropriate electrolyte. A voltage
is placed across the electrodes and these
causes are removal of material from the anode,
[5]. We will solve equation ECM of an
anode surrounded by circular cathode, the
conductivity in the gap between the electrodes
is consdered constant [5]. This problem is
formally identical to one-phase Stefan problem
with zero heat capacity [13].

Cathode

Anode

Fig. (1) : Basic Configuration of ECM.
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Referring to Fig.(2), suppose that the
anode is the shrinking region A(t), with
moving boundary G and Go denote the initial
anode surface at t=0. The region inside the
cathode surface C is denoted by D and the
region occupied by the electrolyte by Dt, so
that D includes A(t) and Dt. Also, it is
convenient to define the moving boundary G,
"t3 Oby
G=s(a,t)
Where
G={(r,q9:r=1 0<q<2p}.

An approximate model for the process is
given by, [5]:
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Where Dt is defined as
Dt = {(r, qt) ,St, a £ r £ 5q,t): OEQE2p :
OEtET}.

Fig. (2) : Annular ECM.



It should be noted that the annular
electrochemical machining boundary
conditions (3) are based on the assumption that
the effects of over potentials could be ignored.

The particular problem we treated in detall
consists of circular cathode of radius ¢ with an
anode inside it. We measure al lengths
in unite of ac, where a is a podtive
non-dimensional constant.

ThenN, (the gradient operator of the non-

dimensional length), and N are connected by
N:E We define further a non-dimensional
oc

potential by F:gf such that egs .(2), (3)
becomes :

N?f =0, inthe electrolyte.........c.cocvueurennnn.
With the boundary conditions

f=0 if r=aonthecathode }
f=1 if r =s(q, t) onthe anodeJ.......... (6)
A non-dimensional time  variable

= (Mg ac) t is defined and eg. (2.24)
becomes[6]

rr r?9q6°

The discretization of potential equation is
straightforward. However, the free boundary
condition on the anode must be transformed
into an expression in terms of the anode speed

dong each ray. Rewriting Nf and?in polar

coordinated system see [9],
Ao 1909 et oo
T 'r 16 4 gdt’ dt 5
where r = s (g, t) on the anode and this
implies 10 =9 g 170 _ 6
Ir dt r 96 dt
r _fis, fs do
Tdt Tt 76 dt
1
e ®)
it 10r°76
. . fig 1T¢
It t t I — D
is convenient to replace 10 y o

Since the tangential derivative vanishes on the
anode, then:
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10 11
10 1010,
Ir=s(6,t)

Jo160 _

Then:
M:_
16

1s ¢
g

Now substituting eg. (9) in eg. (8), so the
gradient condition on the anode surface leads

Ir ﬂt 16 s e T ﬂl’u,
Hence
Is_19, 1 Tss o
it r s°9696 1r
_1o, @1 950 10
fir &s 764 r
Therefore:

Ts_ e aa‘ﬂsou‘ﬂq)
Tt g gs‘ﬂegg‘ﬂr

Or equivalently:
?T—q: = IS ot (10)
=00 14 31 ﬂSO (D)
S ﬂ@ o
So the fina mathematical model of the
problemis:
N% =0 in the electrolyte ...........coocvrerrnennne. (12)
f =0 on the cathode, wherer = a.................. (12
f =1 onthe anode, wherer =s(q, t) ............ (13)
f=f(g,t) ontheanode.........c...ccocervuvrernenn. (14)
Where
Is/1t
f(@t)=———— ,see[10]
1+aa ﬂso
gs 16 5
3. The Variational Formulation of the ECM
Problem

As its known, variational methods are one
of the most important approaches that could be
used to solve many complicated problems
of mathematical physica and chemica in
general, and moving and free boundary vaue
problems, in particular. To solve the
problem  under  consderation  through
variational approach, a variationa formulation
corresponding to the problem must be derived:
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To make such a formulation, first let
<u, v> be the symmetric, non-degenerate,
bilinear form defined by:

<u, v>= q@pvrdrdedt ... (15
D
Whereu: D ® andv:D®

Because of the importance of the linear
operator used in the derivation of the
variational formulation related to Laplace’s
equation used in the ECM problem, we shall
prove next the symmetry of the Laplace’s
ﬂ2 1 1 + 19
qr? r‘ﬂr rz 962
to the chosen bilinear form.

To show the symmetry of Laplace’s
operator in polar coordinate system, we must
prove that [10]:
<Lu, v>=<Lv, u>

operator, L=N?= relative

Consider
<Lu,v>
X o o
_ s 1%u 11u iﬂ_“yvrdrdth
o 11r° 1T r® g%y
\\\ T[ ﬂu 11-[ u p
V+—V+——V drdth
Cgi[l T A TR P
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By using divergence theorem on the first
integration[lO] we get:

€ u 1 9u
<Lu,v>= vdo- ——vdr
O™ o
& fu v lﬂﬂﬂd dodt
D€ ﬂl’ ﬂl’

r 16 16y
However, since v=constant on the
boundary of D and consequently the line

integral equal zero. Hence:
e ufv, 19u fvu

<Lu, v>=- — t—— ——drdedt
o6 rfr rYe 16y

Similarly:

<Lv, = g v Tu, I U G ook
o6 rfr rYe 16y
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Therefore <Lu, v> = <Lv, u>, which men that
L is symmetric relative to the non-degenerate
bilinear form <. >.

Now, by using Margi's theorem, which
states that (There is a variational formulation
corresponding to the linear equation Lu=f, if
and only if the operator L is symmetric relative
to the bilinear form which is non-degenerate),
where the functional is given by :

F[u]=% <LU, U>- <f, U>.iiiiccee e, (16)

The functional (16) may be smplified to
be in the form

FIf]=
\“lﬂ¢ L1%e 1 Tou
Flec Erar T k,;p r drdedt .. (17)

and (17) can be reduced to more familiar form
asfollows:

Hf]=
1...J9%% ‘ﬂ¢> </)
5000} — d dodt
25557 Tr? ﬂr(p r

NN\ ﬂ&ﬂffo ﬂa;ﬂf

: dddt,
ﬂrg r o ﬂqgr a g "

Al Ed r dot

2(11]1 gﬂl’g I’gﬂ - o1
And by using divergence theorem, we have:

1\\\ 66”0

1~ i qf 1 9f
—fd ———fdr
200, ir a r 1q t\;

Ffl= TP
2
%cm‘ e &f]fro %*2;9 drdqt
D a e 9 b

Since f is constant on the boundary of D,
then the above line integra equals zero, and
the fina version of the functional F[f] is given

by :

F[f]:- 1 N\ N\

L oadror+tgzlardect ... (18)
25 r k/)

As a notation, it is important to notice that
the critical points of the functional (18) are the
solution of the ECM problem. Therefore
instead of solving (1)-(4), we may find the
critical points of the functional (18) and this
hasits’ basis on Margi's theorem [11].




4. Numerical Solution of the Problem

As a numerical application, consider the
electrochemical  machining moving B.V.P.
governed by [2]:

¢rr+}¢r +i2¢09 :O In Dt
r r
f=0 if r=a onthecathode
f=1 if r=s(q,t) on the anode
fr=1(f 1) r=s(q,t) ontheanode
Where:
f(f,t)= ﬂtz
1+85’}E 9
esT0 g
From the chemicad and physcal

interpretation of the problem, and for
numerical solution propose the moving
boundary s(q,t) of this problem requires the
following conditions to be satisfied :-
1-When g increases, (q, t) increases.
2-Whent increases, 5(q, t) decreases.
3-Whent =0, 5(q, t) = s0(q), where s5(q) is
the initial moving boundary.

The following definition of s(g,t) may be
consider, which satisfies the above three
conditions,

S0, 1) =So- (At @(p- I,
OE£gEp, OELLET,
Where &y & are constant to be determined
and so is given
Now, instead of solving the problem
analytically which is so difficulty or
impossible, we can find the critical points of
the functional numerically:

N\ N\ \&

grq), += q)e 2 drde dt

Ffl=Q0 O ¢fd +=¢, ~drdo dt ..............
OOS(et)

In order to use the direct variational
methods, we approximate the solution
f (r, g, t) asthefollows:

f(r.a.0)=y (r.a.n)+W (r,g.0).

Where y (r,q,t) is any function which satisfies
the non-homogeneous boundary conditions,
and W(r,q,t) any function which satisfies the
homogeneous boundary conditions.

One of the choices for W(r,q,t) which fits

our needs is the following function:
W(r,g,0=(r- 8)(r- S(a,))*

5 a, cos(jo)r'

j=0

SD°=

11,
LN
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where fij (r,q) = cos (jg) ri-1., i=1, 2, ... , n
j=0,1, 2, ..., m, are chosen from a complete set
of functions. Withn=2, m=1, we have:

2 1 )
W(ra.)=(r- (- (a)*q a & cos(j6) r'*
i=1 j=0
Where g; are constant to be determined
For dsimplicity rewriting, this equation as
follows, with the assumption that

4 = w0 ds = an 86 = o &7 = a1
W(r, g, t)=(r-a) (r-s (g, 1))* (as + & COS q+ae
r+a; r cosq).

Additionally, for the non-homogeneous
boundary condition which satisfied f =1 on the
anode, and by using the mathematica
inspection, we can take y(r, g, t) to be as
follows:

a_,(-3(-s(at)

s@n-a  s@i)-a

y (rab)=

&(q,t) 1
aes(q,t)o s(- a
" Ss@h 5
1s(6,t)
Mt

O
ﬂ

(DOO»OVOVO 8

where $(0,t) = and s(0,t) =

1s(6,1)
10

which is easlly checked that r=s(g,t), then
y(r, g, t)=1.
Now:

f(r,q,t)=y (r, g, t)*W(r, g, 1)
Hence:

f(ro)=—2

s(g,t)- a

+

e

¢
(r- a)(r-S(q,t))c; §at) 1
s(@t)-a 3B, yé s@b-a:
§ gs(ah) o
+(r-8) (r-s(q, 1))* (aa + & cos
+a I +a;rcosq).
Where the first two parts satisfy the non-
homogeneous boundary conditions and the
latest term satisfy the  homogeneous
conditions.
In order to minimize the functional (19),
the partial derivatives of f (r, g, t) with respect
to r and g are found, which are:

O
ﬁ
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e
¢
__ 1 (-a+(-s@t)¢  &@t)
" s(a-a sab-a ¢ B(qt)o
8 es(qt)g
19
s(g,t)-a ~

+2(r-a) (r-s(q,t)) (m+ascosq+asr+arr
cos Q)+ (I-S (0, 1))(au + a5 cOSq + B I + & 1
cos )+ (r- 8) (r- s(a, t))* (a + & cos q).
and
__(r-3((@ t)) L(r-a)(r- s(gb)

s@b)-a2  s@n-2a)
& 20
e, BEHT Y B0, . s@h3(ah- 2@
€+ = Us 2 ~&(g t
& &y g (( - Ssanp 2
Ké 2
aS(qt)o
G q
¢ SS(qt)gu
x o]
2 0
s@1 9+g a0 1 ¢
s@t)- a2 5 ¢, B & sa-a:
¢ N
gs(qt)g @
(- 3)(s@1)- A5G- (- s(ah (GG )
s@- a2

-2(r-3) (r-s(a, 1)) (s(q,t)) (& + @ cosq + a
r+arrcosq)- (-8 (r-s(q, 1)’ (s snqg+a

r sinq).
where
80,07 = T2 and 5((0.1) = ENS2
16 gﬂ 16 éﬂt &
Therefore, minimizing the variational
formulation (19), the following results are
obtained:-
a = 4.947315 a =0.2211012
a=- 1.826011 as = - 20.54833
as = 20.46942 a6 = - 3.23838
a = 3.317843

where the functiona minimum equa to
22.30315.

Also, successive approximations to the moving
boundary for different time steps t and
different value of 6 are presented in Fig.(3)
and (4).
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Fig.(3): Successive approximation to the
moving boundary s(6,t) with increasing t.
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Fig.(4) : Successive approximation to the
moving boundary s(6,t) with increasing 6.

From the obtained results , one can see the
accuracy of the results in which decreasing in
the moving boundary with increasing t and
increasing moving boundary with respect to
increasing g which satisfies conditions of the
physical problem or the mathematical and
numerical solution of the problem asit is given
in condition (1) and (2) .
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