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Abstract
In this paper, the objective is to derive the variational formulation of the electrochemical

machining problem (ECM for short) and to evaluate the numerical solution using the direction Ritz
method. This problem is of degenerate problem which has so many difficulties to be solved using
other approach.

1. Introducation
As an alternative to definition to

mechanical machining problem, a piece of
metal can sometimes be shaped by using it as
an anode in electrolytic cell with an
appropriately shaped cathode. This represent a
moving boundary value problem, because the
anode surface is moved toward the cathode at
constant velocity, and products of the erosion
of the anode are swept away by the
electrolytes, which is pumped through the
space between the electrodes, [12].

2. The mathematical model of the problem
The two dimensional ECM problem will

be considered for two electrodes shown in
Fig. (1). the space between the electrodes is
filled by an appropriate electrolyte. A voltage
is placed across the electrodes and these
causes are removal of material from the anode,
[5]. We will solve equation ECM of an
anode surrounded by circular cathode, the
conductivity in the gap between the electrodes
is considered constant [5]. This problem is
formally identical to one-phase Stefan problem
with zero heat capacity [13].

Fig. (1) : Basic Configuration of ECM.

Referring to Fig.(2), suppose that the
anode is the shrinking region A(t), with
moving boundary Γt and Γo denote the initial
anode surface at t=0. The region inside the
cathode surface C is denoted by D and the
region occupied by the electrolyte by Dt, so
that D includes A(t) and Dt. Also, it is
convenient to define the moving boundary Γt,
∀t ≥ 0 by
Γt = s (θ, t) .................................................. (1)
Where
Γ = {(r,θ): r = 1, 0 < θ < 2π}.

An approximate model for the process is
given by, [5]:

0~~ 2 =∇ in Dt .............................................. (2)
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Where Dt is defined as
Dt = {(r, θ,t) ,sit, a ≤ r ≤ s(θ,t): 0≤θ≤2π :
0≤t≤T}.
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Fig. (2) : Annular ECM.
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It should be noted that the annular
electrochemical machining boundary
conditions (3) are based on the assumption that
the effects of over potentials could be ignored.

The particular problem we treated in detail
consists of circular cathode of radius c with an
anode inside it. We measure all lengths
in unite of αc, where α is a positive
non-dimensional constant.

Then∇, (the gradient operator of the non-

dimensional length), and ∇~ are connected by

∇=
c

∇~ We define further a non-dimensional

potential by φ=φ g~
such that eqs .(2), (3)

becomes :
∇2 φ = 0, in the electrolyte............................ (5)
With the boundary conditions
φ = 0 if r = a on the cathode
φ = 1 if r = s (θ, t) on the anode ........... (6)

A non-dimensional time variable
T = (Mg αc) t is defined and eq. (2.24)
becomes [6]:

anodeTd
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∇= , ............................................. (7)
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The discretization of potential equation is
straightforward. However, the free boundary
condition on the anode must be transformed
into an expression in terms of the anode speed

along each ray. Rewriting ∇φ and
dt
dR in polar

coordinated system see [9],
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It is convenient to replace
∂
∂ by

r∂
∂ .

Since the tangential derivative vanishes on the
anode, then:
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Now substituting eq. (9) in eq. (8), so the
gradient condition on the anode surface leads
to:
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So the final mathematical model of the
problem is:
∇2φ=0 in the electrolyte ............................. (11)
φ=0 on the cathode, where r = a.................. (12)
φ=1 on the anode, where r = s (θ, t) ............ (13)
φr =f(θ, t) on the anode ............................... (14)
Where
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11
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3. The Variational Formulation of the ECM
Problem

As its known, variational methods are one
of the most important approaches that could be
used to solve many complicated problems
of mathematical physical and chemical in
general, and moving and free boundary value
problems, in particular. To solve the
problem under consideration through
variational approach, a variational formulation
corresponding to the problem must be derived:
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To make such a formulation, first let
<u, v> be the symmetric, non-degenerate,
bilinear form defined by:
<u, v> = dtddrrvu

D
∫∫∫ .......................... (15)

Where u: D → and v: D → .
Because of the importance of the linear

operator used in the derivation of the
variational formulation related to Laplace s
equation used in the ECM problem, we shall
prove next the symmetry of the Laplace s

operator, L= 2∇ = 2
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To show the symmetry of Laplace s

operator in polar coordinate system, we must
prove that [10]:
<Lu, v> = <Lv, u>
Consider
<Lu,v>
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By using divergence theorem on the first
integration [10], we get:
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However, since v=constant on the
boundary of D and consequently the line
integral equal zero. Hence:
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Therefore <Lu, v> = <Lv, u>, which men that
L is symmetric relative to the non-degenerate
bilinear form <. >.

Now, by using Margi's theorem, which
states that (There is a variational formulation
corresponding to the linear equation Lu=f, if
and only if the operator L is symmetric relative
to the bilinear form which is non-degenerate),
where the functional is given by :

F[u]=
2
1

<Lu, u>−<f, u>.............................. (16)

The functional (16) may be simplified to
be in the form
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and (17) can be reduced to more familiar form
as follows :
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then the above line integral equals zero, and
the final version of the functional F[φ] is given
by :
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As a notation, it is important to notice that
the critical points of the functional (18) are the
solution of the ECM problem. Therefore
instead of solving (1)-(4), we may find the
critical points of the functional (18) and this
has its basis on Margi's theorem [11].
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4. Numerical Solution of the Problem
As a numerical application, consider the

electrochemical machining moving B.V.P.
governed by [2]:

011
2 =++ rr rrr In Dt

φ = 0 if r = a on the cathode
φ = 1 if r = s (θ, t) on the anode
φr = f (φ,t) r = s (θ, t) on the anode
Where:
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From the chemical and physical
interpretation of the problem, and for
numerical solution propose the moving
boundary s(θ,t) of this problem requires the
following conditions to be satisfied :-
1-When θ increases, s(θ, t) increases.
2-When t increases, s(θ, t) decreases.
3-When t = 0, s(θ, t) = s0(θ), where s0(θ) is
the initial moving boundary.

The following definition of s(θ,t) may be
consider, which satisfies the above three
conditions,

s(θ, t) = s0 − (a1 + a2(π − θ)2)t e
ta3 ,

0 ≤ θ ≤ π, 0 ≤ t ≤ T, 
Where a1,a2 are constant to be determined

and so is given
Now, instead of solving the problem

analytically which is so difficulty or
impossible, we can find the critical points of
the functional numerically:
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In order to use the direct variational
methods, we approximate the solution
φ (r, θ, t) as the follows:

φ(r,θ,t)=ψ(r,θ,t)+W (r,θ,t).
Where ψ(r,θ,t) is any function which satisfies
the non-homogeneous boundary conditions,
and W(r,θ,t) any function which satisfies the
homogeneous boundary conditions.

One of the choices for W(r,θ,t) which fits
our needs is the following function:

W(r,θ,t)=(r−a)(r−s(θ,t))2

∑∑
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where φij (r,θ) = cos (jθ) ri−1., i=1, 2, … , n;
j=0,1, 2, …, m, are chosen from a complete set
of functions. With n = 2, m = 1, we have:

W(r,θ,t)=(r−a)(r−s(θ,t))2 ∑∑
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i
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Where aij are constant to be determined
For simplicity rewriting, this equation as
follows, with the assumption that
a4 = a10 a5 = a11 a6 = a20 a7 = a21

W(r, θ, t)=(r−a) (r−s (θ, t))2 (a4 + a5 cos θ+a6

r+a7 r cos θ).
Additionally, for the non-homogeneous

boundary condition which satisfied φ=1 on the
anode, and by using the mathematical
inspection, we can take ψ(r, θ, t) to be as
follows:
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which is easily checked that r=s(θ,t), then
ψ(r, θ, t)=1.

Now:
φ(r, θ, t)=ψ (r, θ, t)+W(r, θ, t)
Hence:

φ(r,θ,t)= r a
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+(r−a) (r−s (θ, t))2 (a4 + a5 cos θ
+ a6 r + a7 r cos θ).

Where the first two parts satisfy the non-
homogeneous boundary conditions and the
latest term satisfy the homogeneous
conditions.

In order to minimize the functional (19),
the partial derivatives of φ(r, θ, t) with respect
to r and θ are found, which are:
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Therefore, minimizing the variational
formulation (19), the following results are
obtained:-
a1 = 4.947315 a2 = 0.2211012
a3= −1.826011 a4 = −20.54833
a5 = 20.46942 a6 = −3.23838
a7 = 3.317843
where the functional minimum equal to
22.30315.
Also, successive approximations to the moving
boundary for different time steps t and
different value of are presented in Fig.(3)
and (4).

-1 2 -0 8 -0 4 0 0 0 4 0 8 1 2

0.0

0.4
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1.2
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t=0.01

t=0.06

t=0.1

t=0.15

Fig.(3): Successive approximation to the
moving boundary s( ,t) with increasing t.
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0.4

0.8

1.2

θ=0

θ=π/6

θ=π/3
θ=π/2
θ=π

Fig.(4) : Successive approximation to the
moving boundary s( ,t) with increasing .

From the obtained results , one can see the
accuracy of the results in which decreasing in
the moving boundary with increasing t and
increasing moving boundary with respect to
increasing θ which satisfies conditions of the
physical problem or the mathematical and
numerical solution of the problem as it is given
in condition (1) and (2)  . 
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