S-QUASI-INJECTIVE MODULES

Ahmed Hanoon Abud Department of Mathematics, College of Science, Al-Mustansirya University.

Abstract

Let R be a ring with non-zero identity and let M be a right R-module. This paper study the concept of s-quasi-injectivity. Some properties of this concept are investigated and some conditions has been given for s-quasi-injective R-modules to be injective or quasi-injective. Some conditions stated for submodules with this property to be s-quasi-injective.

Keywords: injective, quasi-injective, stable.

Introduction and Definitions

The concept of s-quasi-injectivity was introduced by S.A. Al-Saadi in [1]. A submodule N of an R-modul M is called stable if for each R-homomorphism $f: N \rightarrow M$ implies $f(N) \subseteq N$. An R-module M is called fully stable in case every submodule of M is stable [2]. An R-module M is called s-quasi-injective if for each stable submodule N of M, each R-homomorphism from N into M can be extended to an R-endomorphism of M. He related this concept with the extended modules. In our work we gives some characterization concept for this and generalized some properties of quasiinjectivity to s-quasi-injectivity and give s ome conditions under which these concepts be coincides. We show that these concepts are equivalent in case that the R-module is fully stable. Also we proved that an s-quasiinjective R-module M with $J(S)M \subset M$ is injective if there is an s-ess-epimorphism from M onto its injective envelope. We define a kind of subset of the ring of endomorphism of the injective envelope of an R-module and we give a characterization of s-quasi-injectivity in term of it. If M is an R-module we write $ann_R(M) = \{r \in R \mid rm = 0, \forall m \in M \}$ and we write $ann_M(R) = \{m \in M \mid rm = 0, \forall r \in R\}$.[3]

Lastly through this work, all rings are with 1 and all modules are unitary R-modules.

(1) **Definition:**

An R-module M is said to be s-quasiinjective if each R-homomorphism of any stable submodule N of M into M can be extended to an R-endomorphism of M.[1]

(2) Examples and Remarks:

- (a)Every quasi-injective R-module(and hence injective) is s-quasi-injective .
- (b) Infinite cyclic groups are S-quasi-injective for,

Let G =<a> bean infinite cyclic group generated by a and N be any stable subgroup of G, then N = for some b \in N. For each Z-homomorphism f: N \rightarrow G and since N is stable, then f(N) \subseteq N and hence f(b)=nb for some n \in Z. Now define g: G \rightarrow G by g(x)=nx \forall x \in G. It is clear that g is an extension of f.

In particular Z as Z-module is s-quasiinjective while is not quasi-injective, since:

Assume that Z is quasi-injective Z-module and let $f:2Z \rightarrow Z$ be the Z-homomorphism defined by f(2n)=n for each $n \in Z$. Then there is an endomorphism g: $Z \rightarrow Z$ such that g extends f (i.e. g $|_{2Z} = f$) thus

n=f(2n)=g(2n)=2n g(1) and hence g(1)=1/2 which is a contradiction. Therefore Z is not a quasi-injective Z-module.

We start our result by the following proposition which give us the relationship between the s-quasi-injective R-modules and the s-quasi-injective R/I-modules, where I is an ideal of R.

(3)Proposition:

Let M be an R-module and I be an ideal of R, if M is s-quasi-injective R/I-module then M is s-quasi-injective R-module. Conversely, if M is s-quasi-injective R-module such that $I \subseteq ann_R(M)$, then M is s-quasi-injective R/I-module.

Proof:

The relation (r+I)m=rm for each $m \in M$ and $r \in R$ is used in each case to define M as a module over R or over R/I where M is s-quasi-injective R/I-module or R-module (respectively). Let N be anv stable M (respectively R-submodule of R/Isubmodule) and $f:N \rightarrow M$ be any R-homomorphism (respectively R/I-homomorphism), then an R/I-submodule (respectively Ν is R-module) and f is an R/I-homomorphism (respectively R-homomorphism). Since M is s-quasi-injective R/I-module (respectively R-module), then there exist an extension in both cases, thus M is s-quasi-injective R-module (respectively R/I-module).■

Next we will give a characterization of s-quasi-injectivity. First we need the following definition.

(4) Definition:

Let M be an R-module and N be any stable submodule of M, then N is said to be complement stable (com-stable) if N have a stable complement in M. M is called fully complement stable (fully com-stable) in case each stable submodule of M is com-stable.

(5) Examples and Remarks:

- (a) Each fully stable R-module is fully comstable.
- (b) An R-module M is called cl-fully stable if each closed submodule of M is stable.[2]
- (c) The converse of (a) is not true in general since any cl-fully stable is a fully comstable but it is not fully stable [2].
- (d) the complement of a submodule is not unique in general, but it is unique for the stable submodules.[2]

A submodule N of an R-module M is called essential in case N have non-zero intersection with each non-zero submodule of M.[3]

The following proposition give as a relationship between the essential submodules and complement submodules.

(6) Proposition:

Let N be a submodule of an R-module M, if K is the complement of N in M then $N \oplus K$ is essential in M. \blacksquare [4]

Now we are ready to state our result which is a characterization of s-quasi-injectivity.

(7) Theorem:

Let M be a fully com-stable R-module. Then M is s-quasi-injective if and only if for each essential stable submodule N of M, each R-homomorphism of N into M can be extended to an endomorphism of M.

Proof:

Let N be any stable submodule of M and $f:N \rightarrow M$ be any R-homomorphism of N into M. Assume that K is the complement of N in M, then K is stable (since M is fully com-stable) and $N \oplus K$ is stable submodule of M [2] and essential in M (by above proposition), moreover f can be extended to an R-endomorphism g of $N \oplus K$ by putting g(K)=(0). Therefore by hypothesis there is an R-endomorphism h of M which is an extension of g and hence of h. The converse is trivial.

Johnson and Wong show that an R-module M is quasi-injective if and only if M is invariant under every endomorphism of its injective envelope. Next we give a characterization of s-quasi-injectivity in term of special kind of endomorphism of the injective envelope.

First we need to define the following

(8) Definition:

Let M be an R-module and E(M) be its injective envelope, an R-endomorphism $\alpha \in \text{End}_{R}(E(M))$ is said to be stable-essential endomorphism simply (s-ess-endomorphism) if there exist a stable essential submodule N of M such that N is invariant under α .

FixedT={ $\alpha \in End_R(E(M)) \mid \alpha(N) \subseteq N$ } where $End_R(E(M))$ is the endomorphism ring of the injective envelope of M.

Note that if $S = End_R(E(M))$, then the Jacobson radical of S is :

 $J(S) = \{ \alpha \in S \mid \ker(\alpha) \text{ is essential submodule} \\ of E(M) \} [4].$

To show that $J(S) \subseteq T$, let $\alpha \in J(S)$ then ker(α) \cap M is an essential submodule of M. Furthermore, α (ker(α) \cap M) = 0 \subseteq ker(α) \cap M, which implies that $\alpha \in T$.

Now, we can give our characterization of s-quasi injectivity.

(9) Theorem:

Let M be a fully com-stable R-module, E(M) be its injective envelope and $S = End_R(E(M))$. Then M is s-quasi injective and $J(S)M \subseteq M$ if and only if M is invariant under T.

Proof:

Suppose that M is invariant under T (i.e TM \subseteq M), since J(S) \subseteq T as we show above, we have $J(S)M \subseteq M$. By theorem (7) it is sufficient to prove this direction on the essential submodules. Let N be any stable essential submodule of M and f any R-homomorphism, $f:N \rightarrow M$. Injectivity of implies there exist E(M)that an R-homomorphism $h:E(M) \rightarrow E(M)$ such that $h(N) = f(N) \subseteq N$, hence $h \in T$, so $h(M) \subseteq M$, thus $h \mid_{M}: M \to M$ is an extension of f and hence M is s-quasi-injective.

Conversely, let $f \in T$ then there exist a stable essential submodule N of M such that $f(N) \subseteq N$. By s-quasi-injectivity of M, there exist an R-homomorphism $g:M \to M$ such that g extends f. Now the injectivity of E(M) implies that there is $h \in S$ such that $h \mid_M = h(M) = g(M) \subseteq M$. Hence (f-h)(N) = (0) which implies $N \subseteq \ker(f-h)$ so $\ker(f-h)$ is essential submodule of E(M), hence $f-h \in J(S)$. By hypothesis $(f-h)M \subseteq M$, therefore for each $x \in M$ we have (f-h)(x)=m for some $m \in M$ and hence $f(x)=m-h(x)\in M$, therefore $f(M)\subseteq M$.

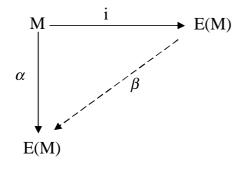
As we show before that each quasiinjective R-module (and hence injective) is s-quasi-injective but the converse is not true in general. It is natural to ask when s-quasiinjectivity consequence with injectivity or quasi-injectivity. The following theorem gives us a relationship between injectivity and s-quasi-injectivity.

(10) Theorem:

Let M be an s-quasi-injective R-module, E(M) be its injective envelope and S= End_R(E(M)) with J(M) \subseteq M. If there is an s-ess-epimorphism α from M onto E(M), then M is injective.

Proof:

Consider the following diagram



where i is the inclusion mapping of M into E(M). By injectivity of E(M), there is an R-homomorphism $\beta \in S$ such that β extends α . But α is s-ess-epimorphism, then there is a stable essential submodule N of M. Therefore $\beta(N) = \beta \mathbf{0}i(N) = \alpha(N) \subseteq N$ (since N is stable), hence $\beta \in T$ and by theorem(6) we have $\beta(M) \subseteq M$ and hence E(M)= $\alpha(M) = \beta \mathbf{0}i(M) = \beta(M) \subseteq M$ which is implies that M=E(M) and therefore M is injective.

The following corollary is immediate consequence from theorem (10)

(11) Corollary:

Let M be an R-module as in the theorem (10), then the following are equivalent:

- (a) M is s-quasi-injective.
- (b) M is injective.
- (c) M is quasi-injective.■

The following proposition shows us conditions under which the class of quasiinjective R-modules and the class of s-quasiinjective R-modules will be equivalent.

(12) Proposition:

Let M be an s-quasi-injective R-module and $J(S)M \subseteq M$. If M contains an essential quasi-injective submodule, then M is quasiinjective.

Proof:

Let N be an essential quasi-injective submodule of M. Then N is essential submodule of E(M) and hence E(N) =E(M) [5],then End_R(E(N))= S. But N is quasiinjective R-module, then $SN \subseteq N$ [6] which is means α (N) \subseteq N $\forall \alpha \in S$ which implies that $\alpha \in T$, thus T= S. But M is s-quasi-injective and J(S)M \subseteq M, then by theorem(9) we have TM \subseteq M and hence SM \subseteq M, therefore M is quasi-injective [6].

The following proposition gives us another condition under which the property of s-quasiinjectivity and the property of quasi-injectivity are equivalent.

(13) Proposition:

Let M be a fully stable R-module. Then M is quasi-injective if and only if M is s-quasi-injective.

Proof:

Suppose that M is s-quasi-injective and let N be a submodule of M and $f:N \rightarrow M$ be an R-homomorphism, then N is stable (since M is fully stable) and hence by s-quasi-injectivity of M, there is an R-endomorphism g of M such that g extends f. Therefore M is quasi-injective. The other direction is trivial.

The following theorem was proved in [2] which gives some equivalent conditions for the fully stability.

(14) Theorem:

The following statements are equivalent for an R-module M:

(a) M is fully stable module.

(b)Every cyclic submodule of M is stable.

(c) For each x,y in M, $y \notin (x)$ implies $ann_R(x) \not\subset ann_R(y)$.

(d) For each x in M, $ann_M(ann_R(x)) = (x)$.

So by using proposition (13) and the above theorem we get the following corollaries.

(15) Corollary:

Let M be an s-quasi-injective R-module such that every cyclic submodule of M is stable, then M is quasi-injective.

(16) Corollary:

Let M be an s-quasi-injective R-module such that for each x,y in M, $y \notin (x)$ implies $ann_R(x) \not\subset ann_R(y)$, then M is quasi-injective.

(17) Corollary:

Let M be an s-quasi-injective R-module such that for each x in M, $ann_M(ann_R(x)) = (x)$ then M is quasi-injective.

The following theorem is useful to show that s-quasi-injective R-modules inherit the property of s-quasi-injectivity to some kinds of its submodules.

(18) Theorem:

Let M be an s-quasi-injective R-module and let N be a closed submodule of M. Then any mapping α of a stable submodule K of M into N can be extended to a mapping β of M into N.

<u>Proof:</u>

By Zorn's lemma we can assume that K is such that α cannot be extended to a mapping of T into N for any submodule T of M which properly contains K. since M is s-quasi-

injective, then α induced by a map. β : M \rightarrow M. suppose β (M) $\not\subset$ N and let L be the complement of N in M, and since N is closed, then N is the complement of L in. Since $\beta(M) + N \supseteq N$, we see that $(\beta(M)+N)$ **I** $L \neq (0)$. Let $0 \neq x=a+b \in (\beta(M)+N))$ I L where $a \in \beta(M)$ and $b \in N$. If $a \in N$, then $x \in N \mathbf{I} L = 0$, a contradiction. Therefore a∉ N, and Now $T = \{y \in M \mid \beta(y) \in$ a= $x-b \in L \oplus N$. $L \oplus N$ } is a submodule of M containing K. If $y \in M$ such that $\beta(y) = a$ then $y \in T$, but $y \notin K$ (since $a \notin N$). let π denote the projection of $L \oplus N$ on N. Then $\pi \beta$ is a map. of T in N, and $\pi \beta$ (y)= β (y)= α (y) \forall y \in K. Thus $\pi \beta$ is proper extension of α , a contradiction. Therefore $\beta(M) \subseteq N$ and β is the desired extension of α .

(19) Corollary:

A stable closed submodule N of an squasi-injective R-module M is a direct summand of M.

<u>Proof:</u>

Consider the injection mapping $i: N \rightarrow N$, then by theorem(18) i can be extended to some R-homomorphism $g: N \rightarrow M$ which implies that $M=N \oplus ker(g)$ and hence N is a direct summand of M.

(20) Proposition:

If the direct product $\prod M_i$ of R-modules $\{Mi \mid i \in I\}$ is s-quasi-injective, then M_i is s-quasi-injective for each $i \in I$.

Proof:

Suppose that $\prod M_i$ is s-quasi-injective R-module, to prove M_i is s-quasi-injective, let N be a stable submodule of M_i and $f: N \rightarrow M_i$ be any R-homomorphism. Since $\prod M_i$ is s-quasi-injective, then f induced by an R-homomorphism $h: \prod M_i \rightarrow \prod M_i$. Put $g=\pi_i \mathbf{0}h$, where π is the natural projection of $\prod M_i$ on M_i .(see the following Figure)

$N \xrightarrow{i_{N}} M_{i} \xrightarrow{i_{Mi}} \Pi M_{i}$ $f \xrightarrow{g=\pi_{i}0h} h$ $M_{i} \xrightarrow{\pi_{i}} h$

Then g is the desired extension of f. Hence M_i is s-quasi-injective.■

The following corollary is immediate consequence from proposition (20).

(21) Corollary:

A direct summand of s-quasi-injective is squasi-injective.

The following corollary follows from corollary (19) and corollary (21).

(22) Corollary:

A stable closed submodule of an s-quasiinjective R-module is s-quasi-injective.

References

- [1] S.A. Al-Saadi : On s-extended modules and, Ph.D. thesis, Al-Mustansiriya Univ., (2007).
- [2] M.S. Abbas: *On fully stable* modules, Ph.D. thesis, Univ. of Baghdad,(1990).
- [3] R. Wisbaur: *Foundations of module and ring theory*, Gordon and Breach Science Publishers, Reading (1990).
- [4] C. Faith: *Lectures on injective modules and quotient rings*, Springer-Verlage, Berlin, Heidelberg, New York (1976).
- [5] D.W. Sharp and P. Va'mos: *Injective modules*, Cambridge Univ. press, London (1972).
- [6] R.E. Wong and E.T. Wong: *Quasi-injective modules and irreducible rings*, J. London Math. Soc. (1961) 39, 260-268.

الخلاصة

Science

لتكن R حلقة ذات عنصر محايد غير صفري وليكن M مقاسا أيمنا أحاديا معرفا على R في هذا البحث درسنا مفهوم المقاسات شبه الأغمارية من النمط ٤. تناولنا بعص خصائص هذا المفهوم وأعطينا بعض الشروط التي تجعل كل مقاس شبه أغماري من النمط ٤ مقاسا شبه أغماري. كذلك أعطينا بعض الشروط التي تجعل هذه الصفة تورث إلى المقاسات الجزئية من مقاس شبه أغماري من النمط ٤.