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Abstract
Let be a commutative ring with identity and be a unitory -module. We say that has the

quasi-pure sum property (qpsp), if the sum of any two pure submodules of is quasi-pure. In this paper we
study modules with this property and we give a characterization of some kind of rings in terms of modules
with the quasi-pure sum property.

Introduction
J. Garcia in [4] studied modules with the

summand sum property (ssp); i.e. the sum of
any two direct summands is direct summand.

In [7] the authors studied modules that
satisfy the pure sum property (psp); i.e. the
sum of any two pure submodules is again pure.

In this paper, we study modules with
property that the sum of any two pure
submodules of is quasi-pure submodule of

(quasi-pure sum property, qpsp).
This work consists of two sections. In

section one, we give the definition of modules
with the (qpsp) with some examples and we
study the direct sum of modules with the
(qpsp). In section two, we classify some rings

by means of modules that have the (qpsp).
Finally, we note that all rings considered in

this paper are commutative with 1 and all
modules are unitary (left -modules).

S1: The quasi-Pure Property:
In this section we introduced the concept

of quasi-pure sum property (qpsp), and we
illustrate it by examples and we also give some
basic property.

Recall that a submodule of an -module
is pure in if for each finitely generated

ideal (equivalently, every ideal) of ,
IM N=IN,[3].

Also we say that a submodule of an
-module is quasi-pure in if for each

and ,there exists a pure sumodule
of such that and ,[2].

Definition (1.1):
An R-module M is said to have the quasi-

pure sum property (qpsp), if the sum of any
two pure submodules of M is quasi-pure in M,
[2].

Examples and Remarks (1.2):
1.If an -module has the psp, then has

the qpsp. The converse is not true, for
example has the qpsp, but does not
have the psp, [7]

2.An -module is said to have quasi-regular
if every submodule of is quasi-pure, [2]. It
is clear that every quasi-regular module
has the qpsp.

3.Consider the module = as a -
module, let = 0 and = (2,1), the
submodule generated by (2,1). It is clear that
each of and is pure in . But + is
not quasi-pure in . Thus does not have
the qpsp.

4.Each pure submodule of a module with qpsp,
has the qpsp, [2].

5.Every commutative ring with identity
considered as an -module has the qpsp, [7]

Remark (1.3):
If an -module has the qpsp, and is

pure submodule of , then has the qpsp.

Proof:
Let and be pure submodules of , then

and are pure in , [3]. Since has qpsp,
then + is quasi-pure in , we claim that

is quasi-pure in , let and ,

then + , hence + , since+ is quasi-pure in , hence there exists a
pure submodule of such that +
and . In fact that is a pure submodule

of , [3]. Also since + and+ is quasi-pure submodule of . So that
has the qpsp.



Nuhad S. Al-Mothafar

187

Remark (1.4):
If is quasi pure submodule of as an
module for every maximal ideal of ,

then is quasi pure in as -module.
Proof:

Let be a submodule of an module ,
let and , then and

where is a maximal ideal of .
Since is quasi pure, then there exists a pure
submodule of such that .
Thus and is pure in which
implies that is quasi pure in .
Proposition (1.5):

Let be an -module. If has qpsp as
-module for every maximal ideal of ,

then has qpsp as -module.

Proof:
Let and be pure submodule of .

Then and are pure submodule of as
-modules. Since has qpsp, then += ( + ) is quasi pure in for every

maximal ideal in . Thus by (1.4) + is
quasi pure in .

Next we give the following:

Theorem (1.6) [2]:
If an -module has the qpsp, then for

every decomposition = and for
any -homomorphism : , is
quasi-pure in .

Remark (1.7):
If an -module has the qpsp, then

may not have the qpsp as is seen in the
following example.

Consider the module as -module. It is
clear that is pure simple and hence has the
qpsp. But does not have the qpsp. To
see this define a homomorphism : 00 by (0, ) = (2 , 0). It is clear that= {(0,0), (2,0)} is not quasi-pure in

.
The following proposition gives a

necessary condition under which the direct
sum of modules with the qpsp has the qpsp.

Recall that a submodule of an -module
is called fully invariant if for every

endomorphism : , ( ) , [10].

Proposition (1.8):
Let = be an -module where

each is a submodule of . If has qpsp,
then each has the qpsp. The converse is
true if each pure submodule of is fully
invariant.

Proof:
Assume that has the qpsp. Since is a

summand of for each , then has the
qpsp by (1.2-4).

For the converse, let and be pure
submodules of , then = ( )
and = ( ). Thus + =( ) + ( ). Since and

are pure in and has qpsp, then( ) + ( ) is quasi-pure in . By
[1], + is pure in .

Now we show that has the qpsp if+ = for any -modules
and .

Proposition (1.9):
Let and be -modules with the qpsp,

such that + = , then
has the qpsp.
Proof:

Let and be quasi pure submodules of
. Since + = , then= and = , where and

are submodules of , and are
submodules of , [1]. Since and have the
qpsp, then + is quasi- pure in and+ is quasi- pure in . Thus by (4.1.10)
[1] ( + ) ( + ) is quasi- pure in

. But ( + ) ( + ) =( ) + ( ) = + . So + is
quasi- pure in has the qpsp.

The following proposition gives
restrictions on modules whose direct sum has
the qpsp.

Proposition (1.10):
Let be an integral domain and be a

faithfull and pure simple -modules. If
has the qpsp, then is divisible.

Proof:
Let 0 , define :

by ( ) = , . is an
-homomorphism. Since has the qpsp,

then by (1.6), = is quasi-pure. Since
is faithfull, then 0. But is pure
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simple and = , is pure containg
, so that = and hence is divisible.
Since every torsion free and divisible -

module is injective [9].

Corollary (1.11):
Let be an integral domain and be a

torsion free and pure simple -module. If
has the qpsp, then is injective.

Proposition (1.12) [2].:
Let be a ring and let be an -module,

if - module, if has the qpsp, then every
cyclic submodule of is quasi- pure.
S2: Characterization of rings by means of

modules having the qpsp:
In this section we classify some ring by

means of modules that have the qpsp. First
recall that a ring is called quasi- regular if
every ideal in is quasi pure, [2].
Theorem (2.1):

Let be a ring and ( ) = 0. The
following statements are equivalent:

1. is a regular ring.
2. All -modules have the qpsp.
3. All flat -modules have the qpsp.
4. All projective -modules have the qpsp.
5. All free -modules have the qpsp.

Proof:
(1) (2) Since is regular ring, then all

-modules are - regular [8]. Hence all
-modules have the psp [7]. Thus by (1.2.1),

all -modules have the qpsp.
(2) (3), (3) (4), (4) (5) are clear.
(5) (1) Let be an ideal in , then there

exists a free -module and an epimorphism: . Let : be the inclusion map.
Consider : . Since have the
qpsp, then by (1.6) = = is
quasi- pure in , hence is quasi- regular.
Since ( ) = 0, then by [2,cor.(4.2.6)] is a
regular ring.

For a principal ideal domain we have the
following theorem.
Theorem (2.2):

Let be a principal ideal domain. The
following statements are equivalent.

1. is a field.
2. All . -modules have the psp.
3. All -modules have the qpsp.
4. All . flat -modules have the qpsp.

Proof:
(1) (2) Follows from [7].
(2) (3) Clearly
(3) (4) Clearly
(4) (1) Let and let = . Define: by ( ) = . It is clear that is

an epimorphism. Let : be the
inclusion map. Consider : . Since

is a . flat -module [8], then
has the qpsp. Thus by (1.6), = is
quasi- pure in . Hence is quasi- regular
PID. Thus by [2, cor.(4.2.6)] is a field.

By a similar argument one can prove the
equivalence of the other statements.

Recall that an -module is called a
multiplication module if for each submodule

of , there exists an ideal in such
that = , [5]. And an -module

is called self generator if for every
submodule of , there exists a family{ } of endomorphisms of , such that= ( ), [7].
Theorem (2.3):

Let be a ring and be a . faithful
multiplication -module. The following
statements are equivalent:
1. is quasi regular.
2. has the qpsp, for every index set .

Proof:
(1) (2) Clear from [2].
(2) (1) Let be an ideal of . Since is a

multiplication -module, then is
self generator and hence there
exists an epimorphism : ( )( ) , for some index set ,
where { } is a family of an

-endomorphisms from into . Let: be the inclusion map. Consider: . Since ( ) has the qpsp,
then by (1.6) = is quasi- pure in

, then by [2,pro.(4.1.4)] =
where is pure in containg , . Put= . Thus = = , since

is . faithful, then by 1/2 cancellation
property [6]. = . Claim is pure in

and . ( ) = == . Thus = [3], which
implies that is pure in . Also since= . Thus . So that is
quasi- pure. Thus is quasi- regular.
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