DAIF AND SCP - DERIVATIONS ON SEMIGROUP IDEAL I OF A NEAR-RING N.

A.H. Majeed and Hiba Abdulla
 Department of Mathematics, College of Science, Baghdad University.

Abstract

. In this paper we study two kinds of derivations on a semigroup ideal I of a near-ring N. The first kind called Daif-derivation (Daif 1-derivation and Daif 2-derivation), the second kind is called strong commutativity-preserving derivations. Bell and Mason, showed that a prime nearring N must be commutative if it admits any of these kinds of derivations, and we generalize this to a semigroup ideal I.

Keywords and phrases : Prime near-ring, semiprime near-ring, semigroup ideal, Daif 1-derivation, Daif 2-derivation, SCP-derivation.
Mathematical Subject Classification: 16Y30, 16W25, 15U80.

1.Introduction

A left near-ring is a set N together with two binary operations (+) and (.) such that $(N,+$) is a group (not necessarily abelian).and $(N,$.$) is a semigroup, for all a, b, c \in N$; we have $a .(b+c)=a . b+a . c$. A near ring N is called zero symmetric if $0 x=0$, for all $x \in N$. An additive mapping $D: N \rightarrow N$ is called a derivation if $D(x y)=x D(y)+D(x) y$, for all $x, y \in N$. Further an element $x \in N$ for which $D(x)=0$ is called a constant. D is called Daif 1- derivation if D is a derivation with the property that $-x y+D(x y)=-y x+D(y x)$, for all $x, y \in N$, and Daif 2-derivation if D is a derivation with the property that $x y+D(x y)=$ $y x+D(y x)$, for all $x, y \in N$, [6].A mapping D is called strong commutativity - preseriving derivation (scp_ derivation), if D is a derivation such that
$[D(x), D(y)]=[x, y]$, for all $x, y \in N,[5]$. A non empty subset I of N will be called a semigroup ideal if $I N \subseteq I$ and $N I \subseteq I$. A near-ring N is said to be a 2 -torsion free if for all $a \in N, 2 a=0$ implies $a=0$. According to Bell and Mason [3], and Bell and Kappe [2], a near - ring N is said to be prime if $x N y=0$ for $x, y \in N$ implies $x=0$ or $y=0$, and semiprime if $x N x=0$ for $x \in N$ implies $x=0$. For $x, y \in N$, the symbol $[x, y]$ will denote the commutator $x y-y x$, while the symbol (x, y) will denote the additive - group commutator $x+y-x-y$. In [2] the derivation D was called commuting if $[x, D(x)]=0$, for all $x \in N$. As for terminologies used here without
mention, we refer to [7]. Throughout this paper N will denote a zero-symmetric left near - ring with multiplicative center $Z(N)$.

2. The Results

Lemma 1:

Let D be a derivation on a near-ring N and I semigroup ideal of N. Then
$D(x y)=D(x) y+x D(y)$, for all $x, y \in I$.

Proof:

For all $x, y \in I$, we have $x(y+y)=x y+x y$. Applying D for both sides, we get
$D(x(y+y))=x D(y+y)+D(x)(y+y)$

$$
=x D(y)+x D(y)+D(x) y+D(x) y .
$$

On the other hand, we have

$$
\begin{aligned}
D(x y+x y) & =D(x y)+D(x y) \\
& =x D(y)+D(x) y+x D(y)+D(x) y
\end{aligned}
$$

Comparing these two expressions gives

$$
\begin{aligned}
x D(y)+D(x) y & =D(x) y+x D(y) \\
D(x y) & =D(x) y+x D(y)
\end{aligned}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$. \square

Lemma 2:

Let D be a derivation on a near-ring N and I a semigroup ideal of N . Then $(\mathrm{aD}(\mathrm{b})+$ $D(a) b) c=a D(b) c+D(a) b c$, for all $a, b \in I$ and $\mathrm{c} \in \mathrm{N}$.

Proof:

For all $\mathrm{a}, \mathrm{b} \in \mathrm{I}, \mathrm{c} \in \mathrm{N}$, we get

$$
\begin{aligned}
D((a b) c) & =a b D(c)+D(a b) c \\
& =a b D(c)+(a D(b)+D(a) b) c
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
D(a(b c)) & =a D(b c)+D(a) b c \\
& =a b D(c)+a D(b) c+D(a) b c
\end{aligned}
$$

A.H. Majeed

For these two expressions of $\mathrm{D}(\mathrm{abc})$, for all $a, b \in I, c \in N$ we obtain that.
$(\mathrm{aD}(\mathrm{b})+\mathrm{D}(\mathrm{a}) \mathrm{b}) \mathrm{c}=\mathrm{aD}(\mathrm{b}) \mathrm{c}+\mathrm{D}(\mathrm{a}) \mathrm{bc}$.

Lemma 3

Let N be a near-ring and I a semigroup ideal of N that admits a Daif 1-derivation D . Then
(i) $\mathrm{D}(\mathrm{c})=\mathrm{c}$, for each commutator c in I.
(ii) $\mathrm{D}(\mathrm{z})[\mathrm{x}, \mathrm{y}]=[\mathrm{x}, \mathrm{y}] \mathrm{D}(\mathrm{z})$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{I}$ and $y \in N$.

Proof:

(i) Let $\mathrm{c}=[\mathrm{x}, \mathrm{y}]$, where $\mathrm{x} \in \mathrm{I}, \mathrm{y} \in \mathrm{N}$. So that $\mathrm{c} \in$ I.By the definition of Daif $1-$ derivation, we have $D([x, y])=[x, y]$, for all $x \in I, y \in N$. Thus, $\mathrm{D}(\mathrm{c})=\mathrm{c}$ for each commutator c in I .
(ii) Since D is a Daif 1 -derivation on I, we have
$-[x, y] z+D([x, y] z)=-z[x, y]+D(z[x, y])$, for all $x, z \in I, y \in N$.
By Lemma(1), we get $-[x, y] z+D([x, y]) z+$ $[\mathrm{x}, \mathrm{y}] \mathrm{D}(\mathrm{z})=-\mathrm{z}[\mathrm{x}, \mathrm{y}]+\mathrm{zD}([\mathrm{x}, \mathrm{y}])+\mathrm{D}(\mathrm{z})[\mathrm{x}, \mathrm{y}]$.
By application (i), we get
$[\mathrm{x}, \mathrm{y}] \mathrm{D}(\mathrm{z})=\mathrm{D}(\mathrm{z})[\mathrm{x}, \mathrm{y}]$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{I}, \mathrm{y} \in \mathrm{N} . \square$

Lemma 4:

Let N be a prime near-ring and I a semigroup ideal of N , that admits a Daif 1 - derivation D . Then
(i) If c is a commutator in I and $\mathrm{uc}=\mathrm{vc}$, where $u, v \in I$, then $c D(u-v)=0$.
(ii) If c 1 and c 2 are commutators in I with $\mathrm{c} 1 \mathrm{c} 2=0$, then $\mathrm{c} 1=0$ or $\mathrm{c} 2=0$.

Proof:

(i)Let $\mathrm{c}=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x} \in \mathrm{I}, \mathrm{y} \in \mathrm{N}$. Then, by the hypothesis, we have $u[x, y]=v[x, y]$, for all $\mathrm{x}, \mathrm{u}, \mathrm{v} \in \mathrm{I}, \mathrm{y} \in \mathrm{N} . A p p l y i n g \mathrm{D}$ for both sides, we get $u D([x, y])+D(u)[x, y]=v D([x, y])$ $+D(v)[x, y]$, for all $x, u, v \in I, y \in N . B y$ Lemma (3) (i, ii), we get $[x, y] D(u)=$ $[x, y] D(v)$, for all $x, u, v \in I, y \in N$. Hence, $[\mathrm{x}, \mathrm{y}] \mathrm{D}(\mathrm{u}-\mathrm{v})=0$. Thus, $\mathrm{cD}(\mathrm{u}-\mathrm{v})=0$, for all commutator c in I and $u, v \in I$.
(ii) If c1c2 $=0=0 \mathrm{c} 2$, since c 2 is a commutator in I, (i) yields
$\mathrm{c}_{2} \mathrm{D}\left(\mathrm{c}_{1}\right)=0$.
By Lemma (3) (i), since c_{l} is commutator in I we get
$\mathrm{c}_{2} \mathrm{c}_{1}=0$
Replace c_{l} by $y c_{1}$, where $y \in I$, in equation (1), we get
$\mathrm{c}_{2} \mathrm{D}\left(\mathrm{yc}_{1}\right)=0=\mathrm{c}_{2} \mathrm{yD}\left(\mathrm{c}_{1}\right)+\mathrm{c}_{2} \mathrm{D}(\mathrm{y}) \mathrm{c}_{1}$
Using Lemma (3) (ii), and equation (2) in equation (3), we get $c_{2} y D\left(c_{1}\right)=0$, for all commutators c_{1}, c_{2} in I and $y \in I$. Hence, $c_{2} I$ $D\left(c_{1}\right)=0$, by Lemma (3) (i), since c_{1} is commutator, we get $c_{2} I c_{1}=0$. Since I is a nonzero semigroup ideal of N and N is a prime near-ring, we get $c_{1}=0$ or $c_{2}=0$. \square

Lemma 5:

Let N be a prime near-ring and I be a nonzero semigroup ideal of N, then $Z(I) \subseteq$ $Z(N)$.

Proof:

Let $\quad a \neq 0 \in Z(I)$.That means, $[a, x]=0$, for all $x \in I$. Taking $x y$ instead of x, where $y \in N$, we get $[a, x y]=0=x[a, y]$, for all $a, x \in$ $I, y \in N$, since $\mathrm{a} \in Z(I)$. Hence, $I[a, y]=0$, since I is a nonzero semigroup ideal of N and N is a prime near-ring, we obtain $[a, y]=0$, for all $a \in I, y \in N$. Hence, $a \in Z(N)$.

Lemma 6:

Let N be a prime near-ring and I be a semigroup ideal of N.
(i) If z is a nonzero element in $Z(N)$, then z is not a zero divisor.
(ii) If there exists a nonzero element z of $Z(N)$ such that $z+z \in Z(N)$, then $(I,+)$ is abelian.

Proof:

(i) If $z \in Z(N) \backslash\{0\}$, and $z x=0$ for some $x \in I$. Left multiplying this equation by b, where $b \in N$, we get $b z x=0$. Since $z \in Z(N)$, we get $z b x=0$, for $b \in N, x \in I$. Hence, $z N x=0$, since N is a prime near-ring and z is a nonzero element, we get $x=0$.
(ii) Let $z \in Z(N) \backslash\{0\}$ be an element, such that $z+z \in Z(N)$, and let $x, y \in I$, then $(x+y)(z+z)=$ $(z+z)(x+y)$.Hence, $x z+x z+y z+y z=$ $z x+z y+z x+z y$. Since $z \in Z(N)$, we get $z x+z y$ $=z y+z x$.Thus, $z(x+y-x-y)=0$. The Left multiplicative this equation by b, where $b \in N$, we get $b z(x, y)=0$, for all $x, y \in I$ and $b \in N$.Since N is multiplicative with center $Z(N)$, we get $z b(x, y)=0$, for all $x, y \in I, b \in N$. Hence, $z N(x, y)=0$.Since N is a prime near-ring and z is a nonzero element, we get $(x, y)=0$, for all $x, y \in I$.Thus, $(I,+)$ is abelian. \quad.

Lemma 7:

Let D be a nonzero derivation on a prime near-ring N and I be a nonzero semigroup ideal of N. Then $x D(I)=0$ implies $x=0$ and $D(I) x=0$ implies $x=0$, where $x \in N$.

Proof:

Let $x D(I)=0$, and let $r \in N, s \in I$. Then, $0=x D(s r)=x s D(r)+x D(s) r$, thus $x s D(r)=0$, for $x, r \in N$ and $s \in I$. Hence, $x I D(r)=0$. Since I is a semigroup ideal of N, we get $x I N D(r)=0$. Since N is a prime near-ring, I is a nonzero semigroup ideal of N and D is a nonzero derivation on N, we get $x=0$. By similar way, we can show that if $D(I) x=0$, for all $x \in N$, then $x=0$.

Lemma 8:

Let N be a prime near-ring and I a nonzero semigroup ideal of N. If N is 2 - torsion free and D is a derivation on N such that $D^{2}(I)=0$, then $D(I)=0$.

Proof:

Suppose D is a nonzero derivation, For arbitrary $x, y \in I$, we have
$0=D^{2}(x y)=D(D(x y))=D(x D(y)+D(x) y)=$ $x D^{2}(y)+D(x) D(y)+D(x) D(y)+D^{2}(x) y$.
By the hypothesis, we get $2 D(x) D(y)=0$, for all $x, y \in I$. Since N is a 2 - torsion free, we get $D(x) D(y)=0$. Thus, $D(x) D(I)=0$, for all $x \in I$. By Lemma (7), we get $D(I)=0$. \square

Lemma 9:

Let N be a prime near-ring and I a nonzero semigroup ideal of N.If I is commutative, then N is a commutative ring.

Proof:

For all $a, b \in I,[a, b]=0$. Taking $a x$ instead of a and, by instead of b, where $x, y \in N$, we get $[a x, b y]=0$. Since I is commutative semigroup ideal of N, we have $0=a x b y-$ byax $=$ baxy $-b y a x=a b x y-a b y x=a b[x, y]$, for all $a, b \in I, x, y \in N$. Thus, $a b[x, y]=0=$ $I^{2}[x, y]$. Since I is a semigroup ideal of N, we get $I^{2} N[x, y]=0$, for all $x, y \in N$. Since N is a prime near-ring and I is nonzero, we get $[x, y]=0$, for all $x, y \in N$. Hence, N is a commutative ring.

Lemma 10:

Let D be a derivation on a near-ring N and I a semigroup ideal of N, suppose $u \in I$ is
not a left zero divisor. If $[u, D(u)]=0$, then (x, u) is a constant for every $x \in I$.

Proof:

From $u(u+x)=u^{2}+u x$, apply D for both sided we have
$u D(u+x)+D(u)(u+x)=u D(u)+D(u) u+u D(x)+$
$D(u) x$. Which reduces to $u D(x)+D(u) u=$ $D(u) u+u D(x)$, for all $u, x \in I$. Using the hypothesis $\quad[u, D(u)]=0$, this equation is expressible as $u(D(x)+D(u)-D(x)-D(u))=0=$ $u D((x, u))$. Since u is not a left zero divisor, we get $D((x, u))=0$.Thus, (x, u) is a constant for every $x \in I$. \square

Theorem 1:

Let N be a near-ring and I a semigroup ideal of N with no nonzero divisors. If N admits a nonzero derivation D which is commuting on I, then $(N,+)$ is abelian.

Proof:

Let c be any additive commutator in I. Then, by Lemma (10) yields that c is a constant. For any $x \in I, x c$ is also an additive commutator in I. Hence, also a constant. Thus, $0=D(x c)=x D(c)+D(x) c$. First summand in this equation equals zero, hence $D(x) c=0$, for all $x \in I$ and an additive commutator c in I. Since $D(x) \neq 0$, for some $x \in I$ and I has no nonzero divisors of zero, we get $c=0$, for all additive commutator c in I. Hence, $(I,+)$ is abelian. By [1], we get $(N,+)$ is abelian.

Lemma 11:

Let N be a prime near-ring which admits a nonzero derivation D and let I be a semigroup ideal of N such that $D(I) \subseteq Z(N)$, then (I, +) is abelian. If N is a 2 - torsion free and $D(I) \subseteq I$, then I is a central ideal.

Proof:

Since $D(I) \subseteq Z(N)$ and D is a nonzero derivation, there exists a nonzero element x in I, such that $z=D(x) \in Z(N) \backslash\{0\}$.And, $z+z=D(x)+\quad D(x)=D(x+x) \in \quad Z(N)$.Hence, $(I,+)$ is abelian by Lemma (6) (ii). Using hypothesis, for any $a, b \in I$ and $c \in N$, $c D(a b)=D(a b) c$. Using Lemma(2), we have $c a D(b)+c D(a) b=a D(b) c+D(a) b c$. But $D(I) \subseteq$ $Z(N)$ and $(I,+)$ is abelian, so we get $c a D(b)+$ $D(a) c b=a c D(b)+D(a) b c$. So, we have $[c, a] D(b)=D(a)[b, c]$, for all $a, b \in I, c \in N$. Suppose that I is not a central ideal. Choosing
$b \in I$ and $c \in N$ such that $[b, c] \neq 0$. And since $D(I) \subseteq I$, let $a=D(x) \in Z(N)$, where $x \in I$, we get $[c, D(x)] D(b)=D^{2}(x)[b, c]$, for all $x, b \in I$, $c \in N$. Then, $D^{2}(x)[b, c]=0$, for all $x \in I$. By Lemma (6) (i), the central element $D^{2}(x)$ can not be a nonzero divisor of zero, then we conclude that $D^{2}(x)=0$, for all $x \in I$. By Lemma (8), we get $D(x)=0$, which is a contradiction since D is a nonzero derivation on N. So, we get $[b, c]=0$, contradiction with assumption. Hence, I is a central ideal.

Theorem 2:

Let N be a prime near-ring that admits a nonzero derivation D and let I be a semigroup ideal of N such that $D(I) \subseteq Z(N)$. Then $(N,+)$ is abelian. If N is $2-$ torsion free and $D(I) \subseteq I$, then N is a commutative ring.

Proof:

By Lemma (11), we have $(I,+)$ is abelian, and by $[1],(N,+)$ is abelian. Now, assume N is 2 - torsion free. By applying Lemma (11), we get I is a central ideal. Thus, I is a commutative. By Lemma (9), we get N is a commutative ring. ㅁ

Theorem 3:

Let N be a prime near-ring and let I be a nonzero semigroup ideal of N admits a nonzero Daif 1-derivation D.Then ($N,+$) is abelian. If N is 2 -torsion free and $D(I) \subseteq I$, then N is a commutative ring.

Proof:

Since $[x, x y]=x[x, y]$, for all $x \in I, y \in N$. By Lemma (3) (ii), we have

$$
D(z) x[x, y]=x[x, y] D(z)=x D(z)[x, y] \text {, for }
$$

all $x, z \in I$ and $y \in N$.
By Lemma (4) (i), we get $[x, y] D(D(z) x-$ $x D(z))=0$, for all $x, z \in I$ and $y \in N$. Hence, $[x, y] D([D(z), x])=0$, for all $x, z \in I, y \in N$. By Lemma (3) (i), we get $[x, y][D(z), x]=0$. By Lemma (4)(ii), we obtain either $[x, y]=0$ or $[D(z), x]=0$, for all $x, z \in I, y \in N$. If $[D(z), x]=0$, for all $x, z \in I$, then, $D(I) \subseteq$ $Z(I)$.By Lemma(5), we get $D(I) \subseteq Z(N)$. Thus, by Theorem (2), we complete the proof of the theorem. Now, if $[x, y]=0$, for all $x \in I, y \in N$. Taking $x D(z)$ instead of x, where $z \in I$, we get $[x D(z), y]=0=x[D(z), y]$, for all $x, z \in I$, $y \in N$. Hence, $I[D(z), y]=0$, for all $z \in I, y \in N$. Since I is a nonzero semigroup ideal of N
and N is a prime near-ring, we get $[D(z), y]=0$, for all $z \in I, y \in N$. So, $D(I) \subseteq Z(N)$. Again by Theorem (2), we complete the proof in this case.

Theorem 4:

Let N be a prime near-ring and let I be a nonzero semigroup ideal of N admits a Daif 2 -derivation D. Then N is a commutative ring.

Proof:

Since D is a Daif $2-$ derivation on I, we have $D([x, y])=-x y+y x$, for all $x \in I, y \in N$. Replacing y by $x y$ in this equation, we get
$D([x, x y])=-x x y+x y x \quad=x(-x y+y x)$, for all $x, y \in I$.
On the other hand,

$$
\begin{aligned}
D([x, x y])=D(x[x, y]) & =x D([x, y])+D(x)[x, y] \\
& =x(-x y+y x)+D(x)[x, y]
\end{aligned}
$$

It follows from the two expressions for $D([x, x y])$ that
$\mathrm{D}(\mathrm{x}) \mathrm{xy}=\mathrm{D}(\mathrm{x}) \mathrm{yx}$, for all $\mathrm{x} \in \mathrm{I}, \mathrm{y} \in \mathrm{N}$.
Replacing y by $y z$ in equation (4), where $z \in I$, we get
$\mathrm{D}(\mathrm{x}) \mathrm{xyz}=\mathrm{D}(\mathrm{x}) \mathrm{yzx}$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{I}, \mathrm{y} \in \mathrm{N} .$.
Right - multiplbing equation (4) by z, where $z \in I$, we obtain
$\mathrm{D}(\mathrm{x}) \mathrm{xyz}=\mathrm{D}(\mathrm{x}) \mathrm{yxz}$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{I}, \mathrm{y} \in \mathrm{N}$......(6) Combining equation (5) and equation (6), we get $D(x) y[x, z]=0$, for all $x, z \in I, y \in N$. Hence, $D(x) N[x, z]=0$. Since N is a prime near-ring, we get $D(x)=0$ or $[x, z]=0$. If $D(x)=0=D(w)$, for all $x, w \in I$. Then by the defining equation

$$
D([x, w])=D(x w-w x)=D(x) w+x D(w)-
$$

$D(w) x-w D(x)=-x w+w x$, for all $x, w \in I$.
We get $[w, x]=0$, for all $x, w \in I$. Thus, I is a commutative and by Lemma (9), we get N is a commutative ring. If $[x, z]=0$, for all $x, z \in I$. Then I is commutative. And by Lemma (9), we get N is a commutative ring. \square

Lemma 12:

Let N be a prime near-ring and let I a nonzero semigroup ideal of N. If D is an scpderivation on I, then the constants in I are in $Z(N)$.

Proof:

Let x be a constant in I. i.e. $D(x)=0$. Since D is a scp-derivation on I, we have $[x, y]=[D(x), D(y)]=[0, D(y)]=0$, for all $y \in I$. Then, $x \in Z(I)$. By Lemma (5), we get $x \in Z(N)$. \square

Theorem 5:

Let N be a prime near-ring and let I be a nonzero semigroup ideal of N, with no nonzero divisors. If I has right cancellation, D is a nonzero scp-derivation on I and $D(I) \subseteq I$, then D is commuting and $(N,+)$ is abelian.

Proof:

$[\mathrm{x}, \mathrm{xD}(\mathrm{x})]=[\mathrm{D}(\mathrm{x}), \mathrm{D}(\mathrm{xD}(\mathrm{x}))]$, for all $\mathrm{x} \in \mathrm{I}$
By Lemma (1) and (2), the right - hand side of equation (7) equals

$$
\begin{aligned}
& D(x) x D^{2}(x)+D(x)^{3}-D(x)^{3}-x D^{2}(x) D(x)= \\
& D(x) x D^{2}(x)-x D^{2}(x) D(x)
\end{aligned}
$$

The left - hand side of equation (7) equals

$$
\begin{aligned}
& x[x, D(x)]=x\left[D(x), D^{2}(x)\right]=x D(x) D^{2}(x) \\
& -x D^{2}(x) D(x), \text { for all } x \in I .
\end{aligned}
$$

It follows from equation (7) that $\mathrm{xD}(\mathrm{x}) \mathrm{D}^{2}(\mathrm{x})=\mathrm{D}(\mathrm{x}) \mathrm{xD}^{2}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{I} \ldots \ldots .$. (8) If $D^{2}(x)=0$, for all $x \in I$. Then, $D(x)$ is constant in I, by Lemma (12), we get D is central. Thus, D is commuting in I. By Theorem (1), we get $(N,+)$ is abelian. Otherwise, $D^{2}(x)$ can be cancelled on the right in equation (8). In either event, $[x, D(x)]=0$, for all $x \in I$. Thus, by Theorem (1), we get ($N,+$) is abelian.

Theorem 6:

Let N be a near-ring and let I be a nonzero semigroup ideal of N, that has no nonzero divisors of zero. If D is a nonzero scpderivation on I which is commuting on I, then N is a commutative ring.

Proof:

For all $x, y \in I$, we have $[x, x y]=[D(x), D(x y)]$ $=[D(x), x D(y)+D(x) y]$. By Lemma (2), we get $[x, x y]=D(x) x D(y)+D^{2}(x) y-x D(y) D(x)-$ $D(x) y D(x)$. Since D is commuting, by Theorem (1), $(N,+)$ is abelian, then we get $x[x, y]=x[D(x), D(y)]=x[D(x), D(y)]+$ $D(x)[D(x), y]$, for all $x, y \in I$
Hence, $D(x)[D(x), y]=0$, for all $x, y \in I$. Since I has no nonzero divisors and D is nonzero, we conclude that $[D(x), y]=0$, for all $x, y \in I$. In particular, for all $x, y, z \in I$, we have $[D(x), z D(y)]=0=z[D(x), D(y)]$. Hence, I $[D(x), D(y)]=0$, for all $x, y \in I$. Since I is a nonzero semigroup ideal of N and N is a prime near-ring, we get $[D(x), D(y)]=0$, for all $x, y \in I$. Thus, we conclude that $[x, y]=0$, for all $x, y \in I$. Hence, I is commutative. By Lemma (9), we get N is a commutative ring.

Acknowledgement

The authors are greatly indebted to the referee for his,her valuable suggestions.

References

[1] N. Argac, "On near-rings with two sided α -derivations", Turk. J. Math., Vol. 28, 2004, 195-204.
[2] H. E. Bell and L. C. Kappe, "Rings in which derivations satisfy certain algebraic conditions", Act Math. Hungar, Vol. 53. No. 3-4, 1989,pp. $339-346$.
[3] H. E .Bell and G. Mason," On derivation in near-rings, Near-rings and Near-fields", (G. Betsch, ed), North-Holland, Amsterdam, 1987, pp. 31 - 35.
[4] H. E.Bell and G. Mason, "On derivations in near-rings and rings", Math. J. Okayama Univ, Vol. 34, 1992, pp. 135-144.
[5] M. Bresar," Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings", Trans. Amer. Math, Soc. 335, 1993, pp. 525-546.
[6] N. N. Daif and H. E.Bell," Remarkes on derivations on semiprime rings", Internat. J. Math \& Math.,Sci. 15 ,1992, pp. 205 - 206.
[7] G. Pliz," Near-rings, $2^{\text {nd }}$ Ed", North Holland, Amsterdam. 1983.

الذき

$$
\begin{aligned}
& \text { في هذا البحث سوف ندرس نو عين من الاشتقاق علـــى } \\
& \text { المثالي شبة زمرة I في الحلقة المتتربة N ، النــو ع الاول } \\
& \text { من النهط ديف -1 واشتقاق من النمط ديـــ -2 والنــو ع } \\
& \text { الثاني هو اثتققاق المحافظ على الابدالية القوية بل وماسون }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وجد اي نوع من الاشتنقاق وسوف نعمـ تلالك علــى المثـــلـي } \\
& \text { شبه زمرة I. }
\end{aligned}
$$

