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Abstract 

New metallic liquid crystalline polyphosphates showed thermotropic nematic liquid crystal 

phases (2.13–2.24 eV). The surface morphology of polyphosphates was examined by the scanning 

electron microscope and showed rough surface and micro pore structure which an indication of the 

presence of several crystalline domains.     [DOI: 10.22401/ANJS.22.2.03] 
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1. Introduction 

Liquid crystalline polymers (LCPs) have 

attract the attention worldwide due to their 

interesting properties [1,2]. They have a high 

chemical resistance, stiffness and strength. In 

addition, they have a good dimensional 

stability and low linear thermal expansion 

coefficient [3–6]. LCPs are of two types that 

known as side-chain and main-chain based on 

the location in which mesogenic moieties 

attached to the backbone of the polymer. The 

crosslinked LCPs have large spontaneous  

de-formations [7] in response to changes in 

temperature [8,9], electric and magnetic fields 

[10] and light illuminations [11,12], for 

example. The spontaneous deformation is 

related to LCPs liquid crystallinity [13]. 

Materials that have polymeric side-backbone 

provides the anisotropy properties to liquid 

crystalline mesogens. While, rigid structures 

were produced for materials that have 

polymeric main-chain backbone and leads to 

high strength and melting temperature. Two 

common types of LCPs are known as lyotropic 

and thermotropic LCPs [14,15]. Lyotropic 

LCPs have liquid crystalline structures in 

solution and can be fabricated as films or 

fibers [14]. Thermotropic LCPs have liquid 

crystalline structures and can be produced 

upon heating [15] and can be made as three-

dimensional structures using injection 

molding, for example [16]. The modification 

of the structures and properties of LCPs is of 

great interest [17–19]. LCPs have high 

transition temperatures in most cases [20–25]. 

There are several processes to reduce the 

tarnation energy by the incorporation of 

flexible spacers [20], frustrated chain packing 

[21], nonlinear links [22] and substitution of 

mesogenic segment [23]. Polymer dispersed 

liquid crystal materials can be used in building 

partitions, privacy windows, projection 

displays, for example [26,27]. Polymer 

stabilized liquid crystal materials have a 

uniform oriented polymer networks within the 

LC matrix [28,29]. The current work 

investigates the use of new metallic liquid 

crystal polymers sensing and liquid crystal 

orientation that is extremely sensitive to the 

morphology, physical and chemical properties 

of the surface. 

 

2. Experimental 

2.1. Polyphosphates 1–3 

Polyphosphates 1–3 Fig.(1) were obtained 

as previously reported and their structures 

were confirmed [30,31]. 
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Fig. (1): Polyphosphates 13. 

 

2.2. Spectral analysis 

The reflection spectra and band energy for 

polyphosphate samples (ca. 500 μm diameter) 

were obtained using an unpolarized deuterium-

halogen light source (Avantes AvaLight-DH-

S, Apeldoorn the Netherlands). The scanning 

electron microscope (SEM) images 

(accelerating voltage = 15 Kv) were recorded 

on Inspect S50 microscope (FEI Company, 

Czechia, Czech Republic). 

 

3. Results and Discussion 

3.1. Liquid crystalline properties 

The hot-stage optical polarized light 

microscope was used to observe the 

mesophase of thermotropic liquid crystal 

polyphosphate 3. Fig.(2) shows the crystalline 

texture of the mesogen in which the phase 

transition occurred and a nematic texture 

character was observed at 290 and 350C. The 

color of polyphosphate 3 was deep brown, the 

transition phase from solid to nematic phase 

(C–N) took place at 290C, the transition 

phase from nematic to isotropic phase (N–I) 

took place at 480C and the thermal stability 

of the nematic phase (ΔT) took place at 190C. 
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Fig (2): Crystalline texture of the mesogen polyphosphates 3 at 290 and 350 C (20x). 

 

3.2. Scanning electron microscopy (SEM) 

The surface morphology of 1–3 was 

examined by the SEM at accelerating voltage 

of 15 kV. The SEM images are shown in 

Figs.(3–5). 

 

 

 

 

 

 
Fig.(3): SEM images of polyphosphate 1. 

 

 
Fig.(4): SEM images of polyphosphate 2. 
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Fig.(5): SEM images of polyphosphate 3. 

 

The SEM images of 13 showed a porous 

amorphous structure as a result of the 

azomethane (-CH=N-) linked networks  

(Figs. (6–8)). Polyphosphates 1–3 have nano-

sized particles in most cases and their 

dimensions were ca. 40–165, 28–806 and  

30–598 nm for 1, 2 and 3, respectively. The 

SEM indicated that the agglomerated particles 

of polyphosphates 1 and 2 arranged side by 

side to produce a topographical microporous 

structures forming clusters as a result of the 

high surface energy Figs.(6) and (7). While, 

the SEM images of 3 revealed an irregular 

morphology with rod-like mesogens Fig. (8) 

which can be used as building blocks to 

construct liquid crystal with optical properties 

[32]. 

 

 

 

 

 

 

 

 

 

 
Fig.(6): SEM images with dimension range of polyphosphate 1. 
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Fig.(7): SEM images with dimension range of polyphosphate 2. 

 

 
Fig.(8): SEM images with dimension range of polyphosphate 3. 

 

3.3. Photonic properties 

The absorption band edge can be used as a 

useful tool to investigate optically the induced 

transition. Photons with energy higher than the 

band gap energy (Eg) should be absorbed [33]. 

In crystalline and non-crystalline materials, 

the electronic transitions between the valence 

and conduction bands start at the absorption 

edge. The absorption edge or Eg is the 

minimum energy difference between the 

lowest minimum of the conduction band and 

the highest maximum of the valence band. The 

changes in the optical absorption spectra  

of 1–3 with a high energy proton beam  

(2.13–2.24 eV) are shown in Figs.(9–11). 

From the band energy (Eg), it has been 

observed the polyphosphate 3 was the best in 

terms of semiconductor properties which is a 

determining factor for the structural stability 

[34]. 
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Fig.(9): Plot of [hvln(Rmax-Rmin)/(R-Rmin)]

2
vs. hv for polyphosphate 1. 

 

 
Fig.(10): Plot of [hvln(Rmax-Rmin)/(R-Rmin)]

2
vs. hv for polyphosphate 2. 

 

 
Fig.(11): Plot of [hvln(Rmax-Rmin)/(R-Rmin)]

2
vs. hv for polyphosphate 3. 

 

The polarizing force of the –CH=N-  

bonds and the resonance effect within the 

aromatic rings can have an effect on the 

formation of liquid crystal phases and their 

stability. Polyphosphate 3 gave a liquid crystal 

phases possibly as a result of the strong 

polarization effect of the –CH=N- bonds of the  

ortho-substitution compared with the meta- (2) 

and the para-substitution (1). Polyphosphate 3 

showed liquid crystalline phase properties at 

50–400 and 440–460 nm regions with a light 

reflectance percentage of 18, and 26%, 

respectively due to the high the irregularity of 

the internal arrangement of 3 compared to  

1 and 2 Fig.(12). 
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Fig.(12): Reflectance of polyphosphates 1–3. 

 

4. Conclusion 

New metallic crystalline liquid 

polyphosphates were developed and could be 

used to adsorb gas molecule efficiently in 

range of 2.13–2.24 eV. The ortho-substituted 

polyphosphate 3 was found to be the most 

efficient liquid crystal. 
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