HYPERCYCLICITY AND SUPERCYCLICITY FOR SOME CLASSES OF OPERATORS

Buthainah A. Ahmed and Hiba F. Al-Janaby
Department of Mathematics, College of Science, University of Baghdad.

Abstract
In this paper, we prove that, if \(T \) is the quotient of a decomposable on a separable Banach space (M–hyponormal operator on a real Hilbert space), then \(T \) is hypercyclic operators. We also show that these classes of operators are supercyclic operators.

Key words and phrases: Hypercyclic operator, supercyclic operator, decomposable operator, M–hyponormal operator, single valued extension property (SVEP), Bishop’s property (\(B \)), Dunford’s property (\(G \)), decomposition property (\(D \)).

Introduction
Let \(X \) be a complex Banach space, and \(\mathcal{L}(X) \) be the set of all bounded linear operators on \(X \), we also denote as usual the spectrum of \(T \) by \(\sigma(T) \). If \(T \in \mathcal{L}(X) \), then a part of \(T \) is a bounded operator obtained by restricting \(T \) to an invariant closed subspace \(M \), say \(T|_M \), a part of the spectrum of \(T \) is denoted by \(\sigma(T|_M) \), where \(M \) is an invariant closed subspace of \(T \).

An operator \(T \in \mathcal{L}(X) \) is called hypercyclic if there is a vector \(x \in X \) with dense orbit \(\{x, Tx, T^2x, ...\} \), and is called supercyclic if there is a vector \(x \in X \) \(\{cT^n x : n \geq 0, c \in \mathbb{C}\} \), is dense in \(X \), see[3]. \(T \in \mathcal{L}(X) \) is said to be decomposable if every open cover \(U = U \cup V \) of the complex plane \(\mathbb{C} \) by two open sets \(U \) and \(V \) effects a splitting of the spectrum \(\sigma(T) \) and of the space \(X \), in the sense that there exist \(T \)-invariant closed linear subspaces \(Y \) and \(Z \) of \(X \) for which \(\sigma(T|_Y) \subseteq U \), \(\sigma(T|_Z) \subseteq V \), and \(X = Y \oplus Z \), for example, all normal operators on a Hilbert space, compact operators and generalized scalar operators on Banach spaces are decomposable, see[6].

Also, for a \(T \)-invariant closed subspace \(M \) of \(T \), let \(T/M \in \mathcal{L}(X/M) \) denote the operator induced by \(T \in \mathcal{L}(X) \) on the quotient space \(X/M \) and called it the quotient of operator, It is known that every quotient space is Banach space, if \(X \) is Banach space, see [6].

Following to[2], let \(H \) be a complex Hilbert space, \(T \in \mathcal{L}(H) \), \(T \) is said to be \(M \)-hyponormal operator, if there exists a constant number \(M > 0 \) such that \(\| (T - \lambda I)^* x \| \leq M \| (T - \lambda I)x \| \) for each complex number \(\lambda \). It is known that every hyponormal operator and every normal operator are \(M \)-hyponormal operators. The purpose of the present paper is to study the quotient of a decomposable on a complex Banach space and the \(M \)-hyponormal operator on a real Hilbert space to be hypercyclic or supercyclic under sufficient conditions.

Preliminaries
An operator \(T \in \mathcal{L}(X) \) is said to be have single valued extension property (SVEP) at \(\lambda_0 \) if for every open set \(U \subseteq \mathbb{C} \) containing \(\lambda_0 \), the only analytic solution \(f : U \rightarrow X \) of the equation

\[
(T - \lambda I)f(\lambda) = 0 \quad (\lambda \in U)
\]

is the zero function., an operator \(T \) is said to have SVEP if \(T \) has SVEP at every \(\lambda \in \mathbb{C} \), ([4], [6]).

Given \(T \in \mathcal{L}(X) \), the local resolvent set \(\rho_T(x) \) of \(T \) at the point \(x \in X \) is defined as the
union of all open subsets $U \subseteq \mathbb{C}$ for which there is an analytic function $f: U \to X$ such that
\[(T - \lambda I)f(\lambda) = x \quad (\lambda \in U).\]

The local spectrum $\sigma_T(x)$ of T at x is then defined as
\[\sigma_T(x) = \mathbb{C} \setminus \rho_T(x)\]

For $T \in \mathcal{L}(X)$, we define the local (resp. glocal) spectral subspaces of T as follows. Given a set $F \subseteq \mathbb{C}$ (resp. a closed set $G \subseteq \mathbb{C}$).

\[X_T(F) = \{x \in X : \sigma_T(x) \subseteq F\}\]

(resp.
\[X_T(G) = \{x \in X : \text{there exists an analytic function } f: \mathbb{C} \setminus G \to X \text{ such that } (T - \lambda I)f(\lambda) = x \text{ for all } \lambda \in \mathbb{C} \setminus G\}\]

Note that T has SVEP if and only if $X_T(F) = X_T(F)$ for all closed sets $F \subseteq \mathbb{C}$. [6, Proposition (3.3.2)].

An operator $T \in \mathcal{L}(X)$ has Dunford's property (C) if the local spectral subspace $X_T(F)$ is closed for every closed set $F \subseteq \mathbb{C}$. We also say that T has Bishop's property (G) if for every sequence $f_n: U \to X$ such that $(T - \lambda I)f_n(\lambda) \to 0$ uniformly on compact subsets in U, it follows that $f_n \to 0$ uniformly on compact subsets in U. It is well known [6, 7] that Bishop's property (G) \implies Dunford's property (C) \implies SVEP.

Moreover, an operator $T \in \mathcal{L}(X)$ has decomposition property (G) if
\[X = X_T(U) + X_T(V)\]
for every open cover (U, V) of \mathbb{C}.

As shown in [1], an operator $T \in \mathcal{L}(X)$ has property (G) iff it is the quotient of a decomposable operator. Moreover properties (G) and (G) are dual to each other, in the sense that an operator $T \in \mathcal{L}(X)$ has property (G) iff its adjoint has property (\tilde{G}), and conversely, T has property (G) iff its adjoint has property (G).

The following result from Feldman, Miller and Miller [3], gives the relation between parts of the spectrum and the local spectra of an operator with Dunford's property (C).

Proposition (2.1):

If $T \in \mathcal{L}(X)$ has Dunford's property (C), then $\sigma_T(x) = \sigma(T|_{X_T(F)})$, whenever $F = \sigma_T(x)$ for some nonzero $x \in X$.

The following result from Feldman, Miller and Miller [3], gives sufficient condition for an operator to be hypercyclic, we denote the interior and exterior of the unit circle by \mathbb{D}, $\mathbb{C} \setminus \overline{\mathbb{D}}$ respectively.

Corollary (2.2):

Let X be a complex Banach space and suppose that $T \in \mathcal{L}(X)$ has the decomposition property (G). If $\sigma_T(x^*) \cap \mathbb{D} = \emptyset$ and $\sigma_T(x^*) \cap (\mathbb{C} \setminus \overline{\mathbb{D}}) = \emptyset$ for every nonzero $x^* \in X^*$. Then T is hypercyclic.

If A is a compact set in the complex plane and $\varepsilon > 0$, then $B(A, \varepsilon)$ denote the ε-neighborhood of A, that is, $B(A, \varepsilon) = \{z : \text{dist}(z, A) < \varepsilon\}$. For the proof of the following classic result see Newman [7], Corollary 1.

Lemma (2.3):

If K is any compact set in the complex plane, A is a component of K, and $\varepsilon > 0$, then there exists disjoint open sets U, V such that $K \subseteq U \cup V$ and $A \subseteq U \subseteq B(A, \varepsilon)$.

If $\rho \geq 0$, we denote the circle $\{z \in \mathbb{C} : |z| = \rho\}$ by Γ_ρ. The interior and exterior of Γ_ρ are the regions $\text{int}\Gamma_\rho = \{z \in \mathbb{C} : |z| < \rho\}$ and $\text{ext}\Gamma_\rho = \{z \in \mathbb{C} : |z| > \rho\}$. Recall that an operator T of is said to be ρ-outer (outer with respect to Γ_ρ) or ρ-inner (inner with respect to Γ_ρ) provided that T satisfies conditions either (a) $X_T(\text{int}\Gamma_\rho)$ is dense and for every $\varepsilon > 0$, $X_T(\text{int}\Gamma_{\rho - \varepsilon})$, or (b) $X_T(\text{ext}\Gamma_\rho)$ is dense and for every $\varepsilon > 0$, $X_T(\text{ext}\Gamma_{\rho - \varepsilon})$ is dense, respectively.

The following Theorem is a stronger form of a result due to Herrero [5, Proposition (3.1)].
Theorem (2.4)
If $T \in \mathcal{L}(X)$ is a supercyclic operator on a separable Banach space X, then there exists a circle Γ_ρ, $\rho \geq 0$, such that $\sigma(T^n|_{X^n}) \cap \Gamma_\rho = \emptyset$ for every nonzero weakly closed T^n-invariant subspace M of X^n.

In particular, every component of the spectrum of T intersects Γ_ρ.

If T is a supercyclic operator, then any circle as in Theorem (2.4) will be called a supercyclicity circle for T.

The following result from Feldman, Miller and Miller [3], gives sufficient condition for an operator to be supercyclic

Corollary (2.5):
Let X be a complex Banach space and assume that $T \in \mathcal{L}(X)$ has the decomposition property $\langle \gamma \rangle$. If there exists a circle Γ_ρ, $\rho \geq 0$, satisfying either:

(a) For every nonzero $x^n \in X^n$, $\sigma_T(x^n)$ intersects both Γ_ρ and $\text{int} \Gamma_\rho$, or

(b) For every nonzero $x^n \in X^n$, $\sigma_T(x^n)$ intersects both Γ_ρ and $\text{ext} \Gamma_\rho$.

Then T is supercyclic.

Main Results For hypercyclicity

Proposition (3.1):
If T is a quotient of a decomposable operator on a complex Banach space X, and $\sigma(T^n|_{X^n}) \cap D = \emptyset$ and $\sigma(T^n|_{X^n}) \cap (C \setminus D) = \emptyset$ for every hyperinvariant M of T, then T is hypercyclic.

Proof:
Let T be a quotient of a decomposable operator on X, then T has property $\langle \beta \rangle$. Hence, T has property $\langle \beta \rangle$, and so T^* has property $\langle C \rangle$. Since $\sigma(T^n|_{X^n}) \cap D = \emptyset$ and $\sigma(T^n|_{X^n}) \cap (C \setminus D) = \emptyset$ for every hyperinvariant M of T^*, and $X^*(F)$ is hyperinvariant for every closed set $F \subseteq C$, then $\sigma(T^n|_{X^*(F)}) \cap D = \emptyset$ and $\sigma(T^n|_{X^*(F)}) \cap (C \setminus D) = \emptyset$. Since T^* has property $\langle \beta \rangle$, then $\sigma(T^*(x^n)) = \sigma(T^n|_{X^*(F)})$ whenever $F = \sigma_T(x^n)$ for some nonzero $x^n \in X^n$ by Proposition (2.1), it follows that $\sigma_T(x^n) \cap D = \emptyset$ and $\sigma_T(x^n) \cap (C \setminus D) = \emptyset$ for every nonzero $x^n \in X^n$. Thus Corollary (2.2) applies to give that T is hypercyclic.

Corollary (3.2):
If T is a quotient of a decomposable operator on X, and T is both inner and outer with respect to a circle Γ_ρ (where inner and outer with respect to a circle Γ_ρ is defined above), $\rho \geq 0$, then a multiple of T is hypercyclic.

Proof:
If T is both inner and outer with respect to Γ_ρ, then $\frac{1}{\gamma} T$ will be hypercyclic by Proposition (3.1).

We now present new results for M-hyponormal operator on a real Hilbert space which is needed, then later

Proposition (3.3):
If T is M-hyponormal operator on a real Hilbert space H, then T^* has Bishop's property $\langle \beta \rangle$.

Proof:
Let $U \subseteq C$ be an open set, and consider a sequence of analytic functions $f_n : U \rightarrow H$ for which $\langle (T^* - \lambda I)f_n(\lambda) \rightarrow 0 \rangle$ as $n \rightarrow \infty$ locally uniformly on U. We want to show that $f_n \rightarrow 0$ as $n \rightarrow \infty$, again locally uniformly on U. Since T is M-hyponormal operator, then T has property $\langle \beta \rangle$, by [5, Proposition (2.4.9)]. Hence $f_n \rightarrow 0$ as $n \rightarrow \infty$ uniformly on all compact subsets of U, for every sequence of analytic functions $f_n : U \rightarrow H$ for which $\langle (T - \lambda I)f_n(\lambda) \rightarrow 0 \rangle$ as $n \rightarrow \infty$ uniformly on all compact subsets of U, but we need $f_n \rightarrow 0$ as $n \rightarrow \infty$ locally uniformly on U, when $\langle (T^* - \lambda I)f_n(\lambda) \rightarrow 0 \rangle$ as $n \rightarrow \infty$ locally uniformly on U. Again, since T is M-hyponormal
operator, then there exists a constant number $M > 0$ such that
\[\| (T - \lambda I)^n x \| \leq M \| (T - \lambda I)^{n-1} x \| \quad \text{for all } \lambda \in \mathbb{R}, \]
\[x \in H. \] Therefore we have
\[\| (T - \lambda I)^n f_\lambda (x) \| \leq M \| (T - \lambda I)^{n-1} f_\lambda (x) \| \quad \text{for all } \lambda \in \mathcal{U}, \quad f_\lambda (x) \in H. \] So $(T - \lambda I)^n f_\lambda (x) \to 0$ as $n \to \infty$. Therefore T^* has Bishop's property (\mathfrak{B}_ρ).

Remark (3.4):
Proposition (3.3) is not true if H is a complex Hilbert space.

Now we shall prove that every M–hyponormal operator on a real Hilbert space is hypercyclic.

Proposition (3.5):

If T is M–hyponormal operator on a real Hilbert space H, and $\sigma(T^|_M) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_{M^*}) \cap (\mathbb{C} \setminus \mathbb{D}) = \emptyset$ for every hyperinvariant M of T^*, then T is hypercyclic.*

Proof:

If T is M–hyponormal operator on a real space H, then T^* has property (\mathfrak{B}), by Proposition (3.3). Thus T^* has property (\mathfrak{C}), and so T has property (\mathfrak{B}). Now, since $\sigma(T^*|_M) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_{M^*}) \cap (\mathbb{C} \setminus \mathbb{D}) = \emptyset$ for every hyperinvariant M of T^*, and $H_T(F)$ is hyperinvariant for every closed set $F \subseteq \mathbb{R}$, then $\sigma(T^*|_{H_T(F)}) \cap \mathbb{D} = \emptyset$ and $\sigma(T^*|_{H_T(F)}) \cap (\mathbb{C} \setminus \mathbb{D}) = \emptyset$ Since T^* has property (\mathfrak{C}), then $\sigma(T^*)(x) = \sigma(T^*|_{H_T(F)})(x)$ whenever $F = \phi_T(x)$ for some nonzero $x \in H$. by Proposition (2.1), it follows that $\sigma_T(x) = \sigma(T^*|_{H_T(F)})(x)$, for every nonzero $x \in H$. Therefore T is hypercyclic by Corollary (2.2).

Corollary (3.6):

If T is M–hyponormal operator on a real Hilbert space H, and T is both inner and outer with respect to a circle Γ_ρ (where inner and outer with respect to a circle Γ_ρ is defined above), then $\rho > 0$, then a multiple of T is hypercyclic.

Proof:

If T is both inner and outer with respect to Γ_ρ, then $\frac{1}{\rho} T$ will be hypercyclic by Proposition (3.5).

Main Results for Supercyclic

Proposition (4.1):

*If T is a quotient of a decomposable operator on a complex Banach space X, and there exists a circle Γ_ρ, $\rho \geq 0$, such that either:

a–For every hyperinvariant subspace M^\ast of T^*, $\sigma(T^*|_{M^\ast}) \cap \mathbb{D} = \emptyset$ and $\mathbb{D} \setminus \mathbb{D}$ or

b–For every hyperinvariant subspace M^\ast of T^*, $\sigma(T^*|_{M^\ast}) \cap \mathbb{D} \setminus \mathbb{D}$ intersects $\partial \mathbb{D}$. Then T is supercyclic.*

Proof:

Since T is a quotient of a decomposable operator on X, then T has property (\mathfrak{B}). Hence T^* has property (\mathfrak{B}), and so T^* has property (\mathfrak{C}). If $\sigma(T^*|_{M^\ast})$ intersects Γ_ρ and $\partial \mathbb{D}$, for every hyperinvariant subspace M^\ast of T^*. And since $X^\ast = \{F \subset \mathbb{R} \mid F \text{ is hyperinvariant for every closed set } F \subset \mathbb{R} \}$, then $\sigma(T^*|_{M^\ast}) \cap \mathbb{D} \setminus \mathbb{D}$ intersects Γ_ρ and $\partial \mathbb{D}$. Since T^* has property (\mathfrak{C}), then $\sigma_T(x) = \sigma(T^*|_{M^\ast}) \cap \mathbb{D} \setminus \mathbb{D}$, whenever $F = \phi_T(x)$ for some nonzero $x \in X$, by Proposition (2.1), it follows that $\sigma_T(x)$ intersects both $\partial \mathbb{D}$ and $\mathbb{D} \setminus \mathbb{D}$, for every nonzero $x \in X$. Thus Corollary (2.5) applies to give that T is supercyclic. Similarly, if $\sigma(T^*|_{M^\ast})$ intersects $\partial \mathbb{D}$, and $\mathbb{D} \setminus \mathbb{D}$, for every hyperinvariant subspace M^\ast of T^*, then T is supercyclic.

We say that an operator is *purely supercyclic*, if it pure (It mains the restriction of operator on any nontrivial invariant subspace is not normal), supercyclic and no multiple of it is hypercyclic.

Corollary (4.2):
If T is a quotient decomposable operator on X, and T is purely supercyclic, then T has unique supercyclicity circle.

Proof:
If there are two supercyclicity circles, Γ_{ρ_1} and Γ_{ρ_2}, with $0 \leq \rho_1 < \rho_2$, then every part of the spectrum of T^\ast intersects both Γ_{ρ_1} and Γ_{ρ_2}. Now choose a ρ such that $\rho_1 < \rho < \rho_2$. An application of Lemma (2.3) and the fact that every part of $\sigma(T^\ast)$ must intersect both Γ_{ρ_1} and Γ_{ρ_2} imply that every part of $\sigma(T^\ast)$ will intersect Γ_ρ, as well as the interior and exterior of Γ_ρ. Thus, T is both ρ–inner and ρ–outer, and the previous result implies that a multiple of T is hypercyclic, contrary to our assumption.

Corollary (4.3):
If $\{T_n\}$ is a bounded sequence of quotient of decomposable operators such that for every n, T_n is supercyclic, then $\bigcap_n T_n$ is supercyclic if and only if there is a common supercyclicity circle, Γ_ρ, $\rho \geq 0$, and T_n is ρ–inner for every n or T_n is ρ–outer for every n.

Proof:
Let $T = \bigcap_n T_n$. If T is supercyclic, then a supercyclicity circle for T will be a supercyclicity circle for each T_n. Similarly, if T is ρ–inner (or ρ–outer), then T_n is ρ–inner (or ρ–outer) for each n. Conversely, suppose Γ_ρ is a supercyclicity circle for each T_n and each T_n is ρ–outer. We need to check that if M^\ast is a hyperinvariant subspace for T^\ast, then $\sigma(T^\ast|_{M^\ast})$ intersects both Γ_ρ and $\text{ext} \Gamma_\rho$. However, since M^\ast is hyperinvariant, it must be invariant under every coordinate projection. Thus $M^\ast = \bigcap_n M^\ast_n$, where M^\ast_n is a hyperinvariant subspace of T_n^\ast. Thus, $\sigma(T^\ast|_{M^\ast}) \subseteq \sigma(T_n^\ast|_{M^\ast_n})$ for each n. So, if n is such that $M^\ast_n = \{0\}$, then by assumption $\sigma(T_n^\ast|_{M^\ast_n})$ intersects both Γ_ρ and $\text{ext} \Gamma_\rho$. Thus $\sigma(T^\ast|_{M^\ast})$ also intersects both Γ_ρ and $\text{ext} \Gamma_\rho$. So, Theorem (4.1) implies that T is supercyclic. If each T_n is ρ–inner, then the proof is similar.

Proposition (4.4):
If T is M–hyponormal operator on a real Hilbert space H, and there exists a circle Γ_ρ, $\rho \geq 0$, such that either:

- a– For every hyperinvariant subspace M of T^\ast, $\sigma(T^\ast|_{M^\ast})$ intersects Γ_ρ and $\text{int} \Gamma_\rho$ or

- b– For every hyperinvariant subspace M of T^\ast, $\sigma(T^\ast|_{M^\ast})$ intersects Γ_ρ and $\text{ext} \Gamma_\rho$.

Then T is supercyclic.

Proof:
Since T is M–hyponormal operator on a real Hilbert space H, then T^\ast has property (C), by Proposition (3.3). Thus T^\ast has property (C), and so T has property (C). If $\sigma(T^\ast|_{M^\ast})$ intersects Γ_ρ and Γ_ρ, for every hyperinvariant subspace M of T^\ast. And since $H_{T^\ast}(F)$ is hyperinvariant for every closed set $F \subseteq \Omega$, then $\sigma(T^\ast|_{H_{T^\ast}(F)^\ast})$ intersects Γ_ρ and $\text{int} \Gamma_\rho$. Now since T^\ast has property (C), then $\sigma_{T^\ast}(x^\ast) = \sigma(T^\ast|_{H_{T^\ast}(F)^\ast})$ whenever $F = \sigma_{T^\ast}(x^\ast)$ for some nonzero $x^\ast \in H$ by Proposition (2.1), it follows that and $\sigma_{T^\ast}(x^\ast)$ intersects both Γ_ρ and $\text{int} \Gamma_\rho$, for every nonzero $x^\ast \in H$. Thus Corollary (2.5) applies to give that T is supercyclic. Similarly, if $\varphi(T^\ast|_{M^\ast})$ intersects Γ_ρ and $\text{ext} \Gamma_\rho$ for every hyperinvariant subspace M of T^\ast, then T is supercyclic.

Corollary (4.5):
If T is M–hyponormal operator on a real Hilbert space H, and T is purely supercyclic, then T has unique supercyclicity circle.

Proof:
If there are two supercyclicity circles, Γ_{ρ_1} and Γ_{ρ_2} with $0 \leq \rho_1 < \rho_2$, then every part of the
spectrum of T^* intersects both $\Gamma^\rho_{R_1}$ and $\Gamma^\rho_{R_2}$. Now choose a ρ such that $\rho_1 < \rho < \rho_2$. An application of Lemma (2.3) and the fact that every part of $\sigma(T^*)$ must intersect both $\Gamma^\rho_{R_1}$ and $\Gamma^\rho_{R_2}$, imply that every part of $\sigma(T^*)$ will intersect Γ_{R_1}, as well as the interior and exterior of Γ_{R_2}. Thus, T is both ρ-inner and ρ-outer, and the previous result implies that a multiple of T is hypercyclic, contrary to our assumption.

Corollary (4.6):

If $\{T_n\}$ is a bounded sequence of M-hyponormal operators on a real Hilbert space H such that for every n, T_n is supercyclic, then $\bigoplus_n T_n$ is supercyclic if and only if there is a common supercyclicity circle, Γ^ρ, $\rho \geq 0$, and T_n is ρ-inner for every n or T_n is ρ-outer for every n.

Proof:

Let $=\bigoplus_n T_n$. If T is supercyclic, then a supercyclicity circle for T will be a supercyclicity circle for each T_n. Similarly, if T is ρ-inner (or ρ-outer), then T_n is ρ-inner (or ρ-outer) for each n. Conversely, suppose \bar{T} is a supercyclicity circle for each T_n and each T_n is ρ-outer. We need to check that if M is a hyperinvariant subspace for T^*, then $\sigma(T^*|_{M})$ intersects both $\Gamma^\rho_{R_1}$ and $\text{ext} \Gamma^\rho_{R_2}$. However, since M is hyperinvariant, it must be invariant under every coordinate projection. Thus $M = \bigoplus_n M_n$ where M_n is a hyperinvariant subspace of T_n^*. Thus, $\sigma(T^*|_{M_n}) \supset \sigma(T^*|_{M_n})$ for each n. So, if n is such that $M_n = \{0\}$, then by assumption $\sigma(T^*|_{M_n})$ intersects both Γ_{R_1} and $\text{ext} \Gamma_{R_2}$. Thus $\sigma(T^*|_{M_n})$ also intersects both Γ_{R_1} and $\text{ext} \Gamma_{R_2}$. So, Theorem (4.4) implies that T is supercyclic. If each T_n is ρ-inner, then the proof is similar.

References