ON g, g^*, g^{**}-COMPACT FUNCTIONS

Haider J. Ali and Arkan J. Mohammed
Department of Mathematics, College of Science, Al-Mustansiriah University, Baghdad-Iraq.

Abstract
In this paper we introduce and study g, g^*, g^{**}- compact functions and we study the relation of compact functions with this types of the functions. Finally, we study further theorems and properties on g, g^*, g^{**}- compact functions.

Keywords: g- Compact set, Generalized closed set, Compact function.

1-Introduction
The objective of present paper is to introduce certain classes of sets namely g-compact sets and certain types of g, g^*, g^{**}-compact functions. Various properties of such functions have been discussed.

A space X means a topological spaces (X, τ) on which no separation axioms are assumed, unless explicitly stated. The interior and the closure of any subset A of X will be denoted by $\text{Int}(A)$ and $\text{cl}(A)$ respectively. A function $f : X \to Y$ is said to be a compact if $f^{-1}(K)$ is a compact subset of X, whenever K is a compact subset of Y [1]. A subset K of a space X is called generalized compact, (briefly g-compact) if for every g-open cover of K has a finite subcover. Every g-compact set is compact, but the converse is not true in general as in the following example illustrate.

Example (2.2): Let R be the real line , N be the subset of R and $\zeta = \{ U \subseteq R \mid U = R \text{ or } U \cap N = \emptyset \}$. It is clear that (R, ζ) is a topological space. Put $U_i = N^c \cup \{ i \} = \{ R - N \} \cup \{ i \}$, $i = 1, 2, \ldots$. U_i is not open subset of R, where $i \in N$. Since $U_i \cap N = \{ i \}$, $i = 1, 2, \ldots$.

Now to show that U_i is g-open subset of R. Since the only open set which is cover N is $U=R$ and so $\emptyset \subset U^0$ this implies to U_i is g-open for each $i = 1, 2, \ldots$.

Hence the family $\{ U_i \}_{i=1}^{\infty}$ forms a g-open cover to R; that is, $\bigcup_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} (R - N) \cup \{ i \} = R$, but this cover can not reducible into finite subcover. Therefore R is not g - compact.

To show that R is compact. Since the only open set which is cover N is $U=R$ and so every open cover to R must be contains $U=R$. This means every open cover to R, we can choose finite subfamily $\{ R \}$ cover to R. Therefore R is compact.

Now we introduce the following definitions:

2-Certain Types of Compact Functions:

Definition (2.1), [4]:
A subset K of a space X is said to be generalized compact, (briefly g-compact) if for every g-open cover of K has a finite subcover.

Every g-compact set is compact, but the converse is not true in general as in the following example illustrate.

Example (2.2): Let R be the real line , N be the subset of R and $\zeta = \{ U \subseteq R \mid U = R \text{ or } U \cap N = \emptyset \}$. It is clear that (R, ζ) is a topological space. Put $U_i = N^c \cup \{ i \} = \{ R - N \} \cup \{ i \}$, $i = 1, 2, \ldots$. U_i is not open subset of R, where $i \in N$. Since $U_i \cap N = \{ i \}$, $i = 1, 2, \ldots$.

Now to show that U_i is g-open subset of R. Since the only open set which is cover N is $U=R$ and so $\emptyset \subset U^0$ this implies to U_i is g-open for each $i = 1, 2, \ldots$.

Hence the family $\{ U_i \}_{i=1}^{\infty}$ forms a g-open cover to R; that is, $\bigcup_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} (R - N) \cup \{ i \} = R$, but this cover can not reducible into finite subcover. Therefore R is not g - compact.

To show that R is compact. Since the only open set which is cover N is $U=R$ and so every open cover to R must be contains $U=R$. This means every open cover to R, we can choose finite subfamily $\{ R \}$ cover to R. Therefore R is compact.

Now we introduce the following definitions:
Definition (2.3):
A function \(f : X \to Y \) is said to be g-compact if \(f^{-1}(K) \) is g-compact subset in \(X \), whenever \(K \) is a compact subset in \(Y \).

Every g-compact function is compact, but the converse is not true in general as in the following example illustrate.

Example (2.4):
The identity function \(I_R : (R, \zeta) \to (R, \zeta) \) is compact but not g-compact function.

The compact sets in \(R \) is the set that contain \(N \). Since any covering to this sets must be contain \(R \), then we can choose \(\{ R \} \) to cover this sets. Hence \(I_R \) is compact function, since for any compact subset \(K \) of \(R \), \(I_R^{-1}(K) = K \).

But \(I_R \) is not g-compact function, since \(R \) is compact but \(I_R^{-1}(R) = R \) is not g-compact (example (2.2))

Definition (2.5):
A function \(f : X \to Y \) is said to be g*-compact if \(f^{-1}(K) \) is g-compact subset in \(X \), whenever \(K \) is g-compact subset in \(Y \).

Every compact function is g*-compact but the converse is not true in general as in the following example illustrate.

Example (2.6):
Let \(I : (R, \tau_d) \to (R, \zeta) \), where \(I \) be the identity function. \(I \) is g*-compact function since the g-compact sets in \(\zeta \) are the only finite sets which their inverse images are compact sets in \(\tau_d \). But \(I \) is not compact function since \((R, \zeta) \) is compact (example(2.2)) hence \(I^{-1}(R) = R \), but \((R, \tau_d) \) is not compact, which implies \(I \) is not compact function.

Definition (2.7):
A function \(f : X \to Y \) is said to be g**-compact if \(f^{-1}(K) \) is g- compact subset in \(X \), whenever \(K \) is g- compact subset in \(Y \).

Every g-compact function is g**-compact, which they g*-compact, but the converses is not true in general.

Definition (2.8), [5]:
A function \(f : X \to Y \) is said to be point inversely compact (briefly p.i.compact) if \(f^{-1}(y) \) is compact subset in \(X \), for every \(y \in Y \).

We introduce the following concept.

Definition (2.9):
A function \(f : X \to Y \) is said to be point inversely generalized compact (briefly p.i.g-compact) if \(f^{-1}(y) \) is g-compact subset in \(X \), for every \(y \in Y \).

Remarks (2.10):
Every compact function is p.i.compact but the converse is not true in general, every p.i.g-compact function is p.i. compact but the converse is not true in general and every g-compact function is p.i. compact and p.i.g- compact but the converse is not true in general.

Example (2.11):
Let \(I_R : (R, \tau_d) \to (R, \tau_u) \), where \(I_R \) is the identity function.

To show that \(I_R \) is p.i.compact and p.i.g-compact.

Since \(I_R^{-1}(x) = \{ x \} \), for all \(x \in R \) and every finite set in every topological space is compact and g-compact.

But it is clear \([0,1]\) is compact in usual topology, while \(I_R^{-1}([0,1]) = [0,1] \) is not compact in the discrete topology and hence it is not g-compact.

Therefore \(I_R \) is neither compact nor g-compact function.

Theorem (2.12):
Let \(f : X \to Y \) be g-closed function and p.i.compact, then \(f \) is g*-compact.

Proof:
Let \(K \) be g-closed subset of \(Y \) and \(\{ U_\alpha \}_{\alpha \in \Omega} \) be an open cover of \(f^{-1}(K) \), where \(\Omega \) is the index set. \(T \) be a family of all finite subset of \(\Omega \) set. \(\{ U_\alpha \}_{\alpha \in \Omega} \) be an open cover of \(f^{-1}(K) \), where \(\Omega \) is the index set. \(T \) be a family of all finite subset of \(\Omega \) set. \(U_i = \bigcup_{\alpha \in \Omega} U_\alpha \), where \(i \in T \). Since \(f \) is p.i. compact, for every \(k \in K \), implies \(f^{-1}([k]) \) is compact set and contained in \(U_i \), where \(i \in T \). Hence \(K \subseteq Y - f(X - U_i) \).

So \(K \subseteq \bigcup_{i \in T} (Y - f(X - U_i)) \).
But \(Y - f(X - U_t) \) is g-open, then there exist
\[t_1, t_2, \ldots, t_n \in T \text{ s.t } K \subseteq \bigcup_{i=1}^{n} (Y - f(X - U_{t_i})) \]
(since \(K \) is g-compact) and so
\[f^{-1}(K) \subseteq \bigcup_{i=1}^{n} f^{-1}(Y - f(X - U_{t_i})) \]
\[= \bigcup_{i=1}^{n} (X - f^{-1}(f(X - U_{t_i}))), \]
since \(f^{-1}(Y) = X \)
\[\subseteq \bigcup_{i=1}^{n} (X - (X - U_{t_i})) \]
\[= \bigcup_{i=1}^{n} U_{t_i} = \bigcup_{\alpha \in \Omega_0} U_{\alpha}, \]
where \(\Omega_0 = t_1 \cup t_2 \cup \ldots \cup t_n \).
So \(f^{-1}(K) \) is compact in \(X \). Therefore \(f \) is g'-compact function.

Theorem (2.13):
Every g'-closed subset of g-compact space is g'-compact.

Proof:
Let \(K \) be a g'-closed subset of g-compact space \(X \). Let \(\{G_{\alpha}\}_{\alpha \in \Omega} \) be a g-open cover of \(K \), that is; \(K \subseteq \bigcup_{\alpha \in \Omega} G_{\alpha} \). But \(X - K \) is g-open so,
\[X = (X - K) \cup \bigcup_{\alpha \in \Omega} G_{\alpha}. \]
Since \(X \) is g-compact then \(X = (X - K) \cup \bigcup_{\alpha \in \Omega} G_{\alpha} \), and
\[K \subseteq \bigcup_{\alpha \in \Omega} G_{\alpha}. \]
Therefore \(K \) is g'-compact.

Remark (2.14):
Every finite set is g'-compact.

Theorem (2.15):
A continuous function from g-compact space into \(T_2 \) space is g'-closed.

Proof:
Let \(F \) be a closed subset of \(X \) which is g-compact, so \(X \) is compact. Then \(F \) is compact in \(X \).
Since \(f \) is continuous function, then \(f(F) \) is compact in \(Y \) which is \(T_2 \)-space, then \(f(F) \) is closed, so it is g-closed in \(Y \).
Therefore \(f \) is g'-closed function.

Theorem (2.16):
Let \(f : X \rightarrow Y \) be g-compact function and \(A \) is a closed subset of \(X \), then
\[f|A : A \rightarrow Y \] is also g'-compact.

Proof:
Let \(K \) be a compact subset of \(Y \), then \(f^{-1}(K) \) is g-compact subset in \(X \), but \(A \) is closed in \(X \), so \(A_1 f^{-1}(K) \) is closed in \(f^{-1}(K) \). Hence it is g-closed in \(f^{-1}(K) \).

Therefore by theorem (2.13) \(A_1 f^{-1}(K) \) is g-compact. But \(f^{-1}|_A(K) = A_1 f^{-1}(K) \),
then \(f|A \) is g'-compact.

Definition (2.17),[5]:
Let \(f : X \rightarrow Y \) be a function and \(T \) be a subset of \(Y \), we define \(f_T : f^{-1}(T) \rightarrow T \) by:
\[f_T(x) = f(x) \text{ for all } x \in f^{-1}(T). \]

Theorem (2.18):
If \(f : X \rightarrow Y \) is g-compact continuous function and \(T \) is closed subset of \(Y \), then
\[f_T : f^{-1}(T) \rightarrow T \] is also g'-compact.

Proof:
Let \(G \) be a compact subset of \(T \), then it is compact in \(Y \) and so \(f^{-1}(G) \) is g-compact in \(X \).
Since \(f^{-1}(T) \) is closed in \(X \), then \(f^{-1}(T) \cup f^{-1}(G) \) is closed in \(f^{-1}(G) \), which implies it is g-closed, then by theorem (2.13) \(f^{-1}(T) \cup f^{-1}(G) \) is g-compact. But \(f_T^{-1}(G) = f^{-1}(T) \cup f^{-1}(G) \); that is, \(f_T \) is g-compact.

Theorem (2.19):
Let \(f : X \rightarrow Y \) be bijective function. Then the g''-continuous image of g-compact set is g-compact.

Proof:
Let \(G \) be a g-compact subset of \(X \), and \(\{V_{\alpha}\}_{\alpha \in \Omega} \) be a g-open cover of \(f(K) \); that is,
\[f(K) = \bigcup_{\alpha \in \Omega} V_{\alpha}. \]
So \(K = f^{-1}(f(K)) = f^{-1} \bigcup_{\alpha \in \Omega} V_{\alpha} = \bigcup_{\alpha \in \Omega} f^{-1}(V_{\alpha}). \)
Since \(f \) is \(g^{**} \)-continuous, then \(f^{-1}(V_a) \) is g-open set for all \(\alpha \in \Omega \), so \(\{f^{-1}(V_a)\}_{\alpha \in \Omega} \) is a g-open cover of \(K \), which is g-compact, so

\[
K = \bigcup_{i=1}^{n} f^{-1}(V_{a_i}) ,
\]

then

\[
f(K) = f \left(\bigcup_{i=1}^{n} f^{-1}(V_{a_i}) \right) = \bigcup_{i=1}^{n} f f^{-1}(V_{a_i}) = \bigcup_{i=1}^{n} V_{a_i} .
\]

Therefore \(f(K) \) is g-compact.

Theorem (2.20):

Let \(f_1 : X \rightarrow Y \) and \(f_2 : Y \rightarrow Z \) be functions then

1. If \(f_1 \) is g-compact and \(f_2 \) is \(g^{*} \)-continuous, then \(f_2 \circ f_1 \) is \(g^{**} \)-compact.
2. If \(f_1 \) is \(g^{*} \)-compact and \(f_2 \) is g-compact, then \(f_2 \circ f_1 \) is g-compact.
3. If \(f_1 \) is \(g^{**} \)-compact and \(f_2 \) is \(g^{*} \)-compact, then \(f_2 \circ f_1 \) is g-compact.
4. If \(f_1 \) and \(f_2 \) are \(g^{**} \)-compact, then \(f_2 \circ f_1 \) is g-compact.
5. If \(f_1 \) is g-compact and \(f_2 \) is g-compact, then \(f_2 \circ f_1 \) is g-compact.
6. If \(f_1 \) is g-compact and \(f_2 \) is \(g^{*} \)-compact, then \(f_2 \circ f_1 \) is g-compact.
7. If \(f_1 \) is \(g^{**} \)-compact and \(f_2 \) is \(g^{*} \)-compact, then \(f_2 \circ f_1 \) is g-compact.

Proofs:

1. Let \(K \) be a g-compact subset of \(Z \), then \(f_2^{-1}(K) \) is compact subset of \(Y \), so \(f_1^{-1}(f_2^{-1}(K)) \) is g-compact in \(X \). But

\[
f_1^{-1}(f_2^{-1}(K)) = f_1^{-1} \circ f_2^{-1}(K) = (f_2 \circ f_1)^{-1}(K) .
\]

Therefore \(f_2 \circ f_1 \) is \(g^{**} \)-compact.

In the same way we can prove the others.

Theorem (2.21):

Let \(f_1 : X \rightarrow Y \) and \(f_2 : Y \rightarrow Z \) be functions then

1. If \(g \circ f \) is \(g^{*} \)-compact and \(f \) is surjective \(g^{*} \)-continuous function, then \(g \) is g-compact.
2. If \(g \circ f \) is \(g^{*} \)-compact and \(g \) is one to one \(g^{*} \)-continuous function, then \(f \) is g-compact.
3. If \(g \circ f \) is \(g^{**} \)-compact and \(g \) is one to one \(g^{**} \)-continuous function, then \(f \) is \(g^{*} \)-compact.

Proofs:

1. Let \(M \) be a compact subset of \(Z \), then \((g \circ f)^{-1}(M) \) is g-compact in \(X \), so

\[
f(g \circ f)^{-1}(M) \text{ is g-compact in } Y .
\]

But

\[
f(g \circ f)^{-1}(M) = f(f^{-1}(g^{-1})(M)) = f(f^{-1}(g^{-1}(M))) = g^{-1}(M) .
\]

Therefore \(g \) is g-compact.

2. Let \(M \) be g-compact subset of \(Y \), then by theorem (2.19) we obtain \(g(M) \) is g-compact in \(Z \).

Hence \((g \circ f)^{-1}(g(M)) \) is compact in \(X \). But

\[
(g \circ f)^{-1}(g(M)) = (f^{-1} \circ g^{-1})(g(M)) = f^{-1}(g^{-1}(M)) = f^{-1}(M) .
\]

Therefore \(f \) is \(g^{*} \)-compact.

In the same way we can prove (3).

Theorem (2.22):

If \(A \) is a closed subset of a space \(X \), then the inclusion function of \(A \) is \(g^{**} \)-compact.

Proof:

Let \(i : A \rightarrow X \) be an inclusion function and let \(K \) be a g-compact subset of \(X \). Since \(i^{-1}(K) = A \), \(K \) is closed in \(K \), so it is g-compact. Hence \(A \) is g-compact that is, \(i^{-1}(K) \) is g-compact.

Theorem (2.23):

Let \(f : X \rightarrow Y \) be a homeomorphism then if \(K \) is a g-compact subset of \(X \) so \(f(K) \) is also g-compact.

Proof:

Let \(\{V_a\}_{\alpha \in \Lambda} \) be a g-open cover of \(f(K) \) and let \(F \) be closed subset of \(f^{-1}(V_a) \), for some \(\alpha_0 \in \Lambda \). Let \(F \subset V_{a_0} \) which is g-open set. Then

\[
f(F) \subset V_{a_0}^0 ,
\]

so \(f^{-1}(V_{a_0}) \) is a g-open set, but \(K = \bigcup_{\alpha \in \Lambda} f^{-1}(V_a) \)

so \(K = \bigcup_{i=1}^{n} f^{-1}(V_{a_i}) \), implies

\[
f(K) = f \left(\bigcup_{i=1}^{n} f^{-1}(V_{a_i}) \right) = \bigcup_{i=1}^{n} f f^{-1}(V_{a_i}) = \bigcup_{i=1}^{n} V_{a_i} .
\]

Therefore \(f(K) \) is g-compact set.

Theorem (2.24):

Let \(f_1 : X_1 \rightarrow Y_1 \) and \(f_2 : X_2 \rightarrow Y_2 \) be functions, then if
$f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is g^*-compact then, f_1 and f_2 are also g^*-compact.

Proof:
To prove f_1 is g^*-compact.
Let K be g^*- compact subset of Y_1 , also \{y_2\} is a g^*-compact subset of Y_2, where $y_2 \in Y_2$.
But $K \times \{y_2\} \equiv K$ (by theorem 2.23), which is g^*-compact.

$$(f_1 \times f_2)^{-1} (K \times \{y_2\})$$ is compact subset of $X_1 \times X_2$, but

$$(f_1 \times f_2)^{-1} (K \times \{y_2\}) = (f_1^{-1} \times f_2^{-1}) (K \times \{y_2\})$$

$$= (f_1^{-1} (K)) \times f_2^{-1} (\{y_2\}).$$
Hence $f_1^{-1} (K)$ is compact subset of X_1, therefore f_1 is g^*-compact.
In the same way, we can prove f_2 is g^*-compact.

References